Площадь прямоугольника равна произведению его сторон
Док-во:
Пусть у прямоугольника длины сторон а и b. Достроим его до квадрата со стороной a+b. Т. е. его площадь (квадрата) равна (a+b)^2. С другой стороны эта площадь равна сумме квадрата со стороной а, квадрата со сторой b и двух прямоугольников со сторонами а и b (которую мы и доказаываем). Обозначим ее S и приравняем площадь квадрате со стороной a+b к сумме площадей "маленьких прямоугольников и квадратов".
Площадь прямоугольника равна произведению его сторон (рис. 13.2.1): S = a · b .
Доказательство
Пусть ABCD и AB 1 C 1 D – два прямоугольника с общим основанием AD (рис. 13.2.1).
Рисунок 13.2.1. Рисунок 13.2.2.
Пусть S и – их площади. Докажем, что Разобьем сторону AB прямоугольника на некоторое число n равных частей, каждая из которых равна Пусть m – число точек деления, которые лежат нa стороне AB 1. Тогда Отсюда, разделив на AB , получим (*)
Проведем через точки деления прямые, параллельные основанию AD . Они разобьют прямоугольник ABCD на n равных прямоугольников. Каждый из них имеет площадь Прямоугольник содержит первые m прямоугольника, считая от стороны AD , и содержится в m + 1 прямоугольниках. Поэтому Отсюда (**)
Сравнивая неравенства (*) и (**), заключаем, что При этом и – фиксированные числа, а n может быть выбрано сколь угодно большим. Следовательно, неравенство возможно только при Возьмем теперь единичный квадрат, прямоугольник со сторонами 1, a и прямоугольник со сторонами a , b (рис. 13.2.2). Площадь прямоугольника со сторонами 1 и a обозначим Сравнивая их площади, по доказанному будем иметь и Перемножая эти равенства почленно, получим S = a · b . Теорема доказана.
Площадь прямоугольника равна произведению его сторон
Док-во:
Пусть у прямоугольника длины сторон а и b. Достроим его до квадрата со стороной a+b. Т. е. его площадь (квадрата) равна (a+b)^2. С другой стороны эта площадь равна сумме квадрата со стороной а, квадрата со сторой b и двух прямоугольников со сторонами а и b (которую мы и доказаываем). Обозначим ее S и приравняем площадь квадрате со стороной a+b к сумме площадей "маленьких прямоугольников и квадратов".
(a+b)^2=S+S+a^2+b^2
a^2+b^2+2ab=a^2+b^2+2S
2ab=2S
S=ab. Доказано
Площадь прямоугольника равна произведению его сторон (рис. 13.2.1):
S = a · b .
Пусть ABCD и AB 1 C 1 D – два прямоугольника с общим основанием AD (рис. 13.2.1).
Рисунок 13.2.1. Рисунок 13.2.2.Пусть S и – их площади. Докажем, что Разобьем сторону AB прямоугольника на некоторое число n равных частей, каждая из которых равна Пусть m – число точек деления, которые лежат нa стороне AB 1. Тогда Отсюда, разделив на AB , получим
(*)
Проведем через точки деления прямые, параллельные основанию AD . Они разобьют прямоугольник ABCD на n равных прямоугольников. Каждый из них имеет площадь Прямоугольник содержит первые m прямоугольника, считая от стороны AD , и содержится в m + 1 прямоугольниках. Поэтому Отсюда (**)
Сравнивая неравенства (*) и (**), заключаем, что При этом и – фиксированные числа, а n может быть выбрано сколь угодно большим. Следовательно, неравенство возможно только при Возьмем теперь единичный квадрат, прямоугольник со сторонами 1, a и прямоугольник со сторонами a , b (рис. 13.2.2). Площадь прямоугольника со сторонами 1 и a обозначим Сравнивая их площади, по доказанному будем иметь и Перемножая эти равенства почленно, получим S = a · b . Теорема доказана.