В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Avakado01
Avakado01
06.01.2020 22:51 •  Геометрия

Промінь EM перетинає сторону DF трикутника DEF, DK i FN - перпендикуляри до нього. Довести, що якщо DK=FN, то промінь EM проходить через середину сторони DF.​

Показать ответ
Ответ:
уа43к4к34
уа43к4к34
07.01.2021 03:36

Дано: ΔАВС, ∠В= 77°, ∠С= 73°, ВМ – высота, ВМ⟂АС, т.О – центр окружности, опис. около ΔАВС, т.О1 – центр окружности, опис. около ΔBMC, R1=OC1= 6 см.

Найти: ОВ.

Решение.

1) Рассмотрим ΔВМС. По условию он прямоугольный (поскольку ВМ⟂АС), а это значит, что диаметр окружности, описанной около этого треугольника, будет равен гипотенузе. Т.е. d=BC, а отрезки ВО1 и О1С являются радиусами.

ВО1=О1С= 6 см.

А диаметр ВС= 2•ВО1= 2•6= 12 см.

2) Найдем ∠А.

Сумма углов треугольника равна 180°, значит, в ΔАВС:

∠А= 180°–∠В–∠С= 180°–77°–73°= 30°.

3) ∠А=30° => данный угол является вписанным в окружность с центром О.

А ∠ВОС — центральный угол окружности с центром О. При чем углы ∠А и ∠ВОС опираются на одну и ту же дугу.

4) Вспоминаем свойство: вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

Значит, ∠А= ½∠ВОС => ∠ВОС= 2∠А.

∠ВОС= 2•30°= 60°.

5) Центральный угол ВОС равен 60°. Треугольник ВОС равнобедренный, ОВ=ОС (радиусы), угол при вершине 60° => ΔВОС равносторонний.

Поскольку ВОС – равносторонний треугольник, то ОВ=ОС=ВС= 12 см.

Радиус окружности, описанной около треугольника ABC равен 12 см.

ответ: 12 см.


В треугольнике ABC угол C = 73°, угол B = 77°, отрезок BM – высота треугольника. Найдите радиус окру
0,0(0 оценок)
Ответ:
голозавр
голозавр
07.01.2021 03:36

Дано: ΔАВС, ∠В= 77°, ∠С= 73°, ВМ – высота, ВМ⟂АС, т.О – центр окружности, опис. около ΔАВС, т.О1 – центр окружности, опис. около ΔBMC, R1=OC1= 6 см.

Найти: ОВ.

Решение.

1) Рассмотрим ΔВМС. По условию он прямоугольный (поскольку ВМ⟂АС), а это значит, что диаметр окружности, описанной около этого треугольника, будет равен гипотенузе. Т.е. d=BC, а отрезки ВО1 и О1С являются радиусами.

ВО1=О1С= 6 см.

А диаметр ВС= 2•ВО1= 2•6= 12 см.

2) Найдем ∠А.

Сумма углов треугольника равна 180°, значит, в ΔАВС:

∠А= 180°–∠В–∠С= 180°–77°–73°= 30°.

3) ∠А=30° => данный угол является вписанным в окружность с центром О.

А ∠ВОС — центральный угол окружности с центром О. При чем углы ∠А и ∠ВОС опираются на одну и ту же дугу.

4) Вспоминаем свойство: вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

Значит, ∠А= ½∠ВОС => ∠ВОС= 2∠А.

∠ВОС= 2•30°= 60°.

5) Центральный угол ВОС равен 60°. Треугольник ВОС равнобедренный, ОВ=ОС (радиусы), угол при вершине 60° => ΔВОС равносторонний.

Поскольку ВОС – равносторонний треугольник, то ОВ=ОС=ВС= 12 см.

Радиус окружности, описанной около треугольника ABC равен 12 см.

ответ: 12 см.


В треугольнике ABC угол C = 73°, угол B = 77°, отрезок BM – высота треугольника. Найдите радиус окру
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота