Есть три отрезка диаметра, значит имеем две точки деления. Сумма первых двух отрезков относится к третьему как 3:3, значит вторая точка делит диаметр пополам, а первая точка делит радиус в отношении 2:1. Чтобы получить объём шарового слоя нужно от половины объёма шара вычесть объём шарового сегмента, определённого хордой АВ как диаметром сечения. Объём половины шара: Vп=V/2=4πR³/6=2πR³/3
Объём шарового сегмента: Vc=πh²(R-h/3), где h - высота сегмента. h=СК. СК:СО=2:1, КО=R ⇒ CK=2R/3=h. Vc=π·4R²(R-2R/9)/9=4R³((9-2)/9)/9=28R³/81.
Объём шарового слоя: Vслоя=Vп-Vc=2πR³/3-28πR³/81=26πR³/81 - это ответ.
Чтобы получить объём шарового слоя нужно от половины объёма шара вычесть объём шарового сегмента, определённого хордой АВ как диаметром сечения.
Объём половины шара: Vп=V/2=4πR³/6=2πR³/3
Объём шарового сегмента: Vc=πh²(R-h/3), где h - высота сегмента. h=СК. СК:СО=2:1, КО=R ⇒ CK=2R/3=h.
Vc=π·4R²(R-2R/9)/9=4R³((9-2)/9)/9=28R³/81.
Объём шарового слоя: Vслоя=Vп-Vc=2πR³/3-28πR³/81=26πR³/81 - это ответ.
Вариант решения.
Пусть в пирамиде ОАВС сторона АО=3, СО=4, ВО=12.
Для начала найдем длины сторон ∆ АВС.
По т. Пифагора АВ²=AO²+BO²=9+144=153
По т.Пифагора ВС²=ОС²+ОВ²=16+144=160
АС=√(АО²+ОС²)=√(9+16)=5
Обозначим середину АС - Н; ОВ =К; АО - М,; ВС - Р; ОС - Т; АВ -Е.
Расстояние между серединами АС и ОВ - медиана НК в ∆ ОНВ.
ОН- медиана прямоугольного АОС и равна АС:2=2,5
Формула медианы треугольника
М=0,5•√(2a²+2b²-c²), где а. b и с - стороны, причем с - сторона, к которой проведена медиана.
Тогдв М²=0,25•((2a²+2b²-c²) ⇒
ВН²=0,25•(2•AB²+2•BC²-AC²)=0,25•(2•160+2•153-25)=0,25•601
НК=0,5•√(2•OH*+2*BH*-OB*)=0,5√(12,5+0,5•601-144)=0,5•13=6,5
Аналогично вычисляются сначала медианы АР и ОР из ∆ АВС и ∆ СОВ, затем МР=6,5 из ∆ АРО и медианы АТ и ВТ из ∆ АОС и ∆АОВ, затем ТЕ=6,5 из ∆ АТВ.
Сумма найденных расстояний 3•6,5=19,5