Пусть в равнобедренном треугольнике АВС с основанием AB: АС=СВ=a, AB=b. <A=<B, SinA=SinB=1/4. Тогда CosB=√(1-1/16)=√15/4. По теореме косинусов из треугольника АВС имеем: a²=a²+b²-2abCosB или 0=b²-2*16√15*b*√15/4 или b²-120b=0. b1=0 - не удовлетворяет условию. b=120. Площадь треугольника АВС равна: (1/2)*a*b*sinA или Sabc=(1/2)*16√15*120*0,25=240√15. С другой стороны Sabc=(1/2)*a*h, где а - сторона ВС, h - высота АН, проведенная к этой стороне. Тогда АН=2Sabc/a или АН=480√15/(16√15)=30. ответ: АН=30.
P.S. Заметим, что треугольник АВС - тупоугольный, так как синус угла при основании равен 0,25 => угол ≈14,5°.
Объяснение: В ΔМNK из точки М проведите дугу окружности так, чтобы пересечь прямую NK в двух точках Р и Q. Затем поочереди из двух точек Р и Q проведите дуги одинакового радиуса на полу- плоскости относительно прямой NK, где нет точки М. Назовём точку пересечения этих дуг точкой А. Соединим М и А, получим МН ⊥ NK.
Описание: 1) окр (М; r) ∩ MK, получим Р и Q.
2) окр (Р; R) ∩ окр (К; R) = А.
3) МА ∩ NK = Н, МН- искомая высота Δ МNК.
В ΔСДР проведём поочерёдно две дуги одинаковым радиусом больше половины отрезка ДР навстречу друг другу из точек Д и Р. Эти дуги пересекутся в двух точках М и N. Соединим отрезком точки М и N.
Точку пересечения МN и ДР обозначим точкой К. Проведём отрезок СК, который и будет медианой ΔСДР.
Описание: 1)окр (Д; R) ∩ окр(Р; R), получим М и N.
2) MN ∩ ДР = К, СК- искомая медиана ΔСДР.
P.S. Если непонятно обозначение окружности в описании, то:
окр ( Р; R) - обозначение окружности с центром в Р и радиусом R.
АС=СВ=a, AB=b. <A=<B, SinA=SinB=1/4.
Тогда CosB=√(1-1/16)=√15/4.
По теореме косинусов из треугольника АВС имеем:
a²=a²+b²-2abCosB или 0=b²-2*16√15*b*√15/4 или
b²-120b=0. b1=0 - не удовлетворяет условию.
b=120.
Площадь треугольника АВС равна: (1/2)*a*b*sinA или
Sabc=(1/2)*16√15*120*0,25=240√15. С другой стороны
Sabc=(1/2)*a*h, где а - сторона ВС, h - высота АН, проведенная к этой стороне. Тогда
АН=2Sabc/a или АН=480√15/(16√15)=30.
ответ: АН=30.
P.S. Заметим, что треугольник АВС - тупоугольный, так как синус угла при основании равен 0,25 => угол ≈14,5°.
Объяснение: В ΔМNK из точки М проведите дугу окружности так, чтобы пересечь прямую NK в двух точках Р и Q. Затем поочереди из двух точек Р и Q проведите дуги одинакового радиуса на полу- плоскости относительно прямой NK, где нет точки М. Назовём точку пересечения этих дуг точкой А. Соединим М и А, получим МН ⊥ NK.
Описание: 1) окр (М; r) ∩ MK, получим Р и Q.
2) окр (Р; R) ∩ окр (К; R) = А.
3) МА ∩ NK = Н, МН- искомая высота Δ МNК.
В ΔСДР проведём поочерёдно две дуги одинаковым радиусом больше половины отрезка ДР навстречу друг другу из точек Д и Р. Эти дуги пересекутся в двух точках М и N. Соединим отрезком точки М и N.
Точку пересечения МN и ДР обозначим точкой К. Проведём отрезок СК, который и будет медианой ΔСДР.
Описание: 1)окр (Д; R) ∩ окр(Р; R), получим М и N.
2) MN ∩ ДР = К, СК- искомая медиана ΔСДР.
P.S. Если непонятно обозначение окружности в описании, то:
окр ( Р; R) - обозначение окружности с центром в Р и радиусом R.