Промінь ск ділить кут АСВ на два кути причому кут АСК на 30 градусів більше за кут КСВ. Знайдіть кут між бісектрисою кута АСБ і променем СК, якщо кут АСВ=100 градусів
1) Если прямая, лежащая вне плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна этой плоскости.
2) Если прямая и плоскость перпендикулярны одной и той же прямой, то они параллельны.
Признаки параллельности плоскостей:
1) Если две пересекающиеся прямые одной плоскости cоответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
2) Если две плоскости перпендикулярны одной и той же прямой, то они параллельны.
Признаки перпендикулярности прямой и плоскости:
1) Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
2) Если плоскость перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Наклонная к плоскости. Прямая, пересекающая плоскость и не перпендикулярная ей, называется наклонной к плоскости.
Теорема о трёх перпендикулярах. Прямая, лежащая в плоскости и перпендикулярная проекции наклонной к этой плоскости, перпендикулярна и самой наклонной.
Признаки параллельности прямых в пространстве:
1) Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2) Если в одной из пересекающихся плоскостей лежит прямая, параллельная другой плоскости, то она параллельна линии пересечения плоскостей.
Признаки параллельности прямой и плоскости:
1) Если прямая, лежащая вне плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то она параллельна этой плоскости.
2) Если прямая и плоскость перпендикулярны одной и той же прямой, то они параллельны.
Признаки параллельности плоскостей:
1) Если две пересекающиеся прямые одной плоскости cоответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
2) Если две плоскости перпендикулярны одной и той же прямой, то они параллельны.
Признаки перпендикулярности прямой и плоскости:
1) Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
2) Если плоскость перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Наклонная к плоскости. Прямая, пересекающая плоскость и не перпендикулярная ей, называется наклонной к плоскости.
Теорема о трёх перпендикулярах. Прямая, лежащая в плоскости и перпендикулярная проекции наклонной к этой плоскости, перпендикулярна и самой наклонной.
Признаки параллельности прямых в пространстве:
1) Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
2) Если в одной из пересекающихся плоскостей лежит прямая, параллельная другой плоскости, то она параллельна линии пересечения плоскостей.
Т
ответ:Краткие решения:
1) AB = CD (св-во параллелограмма), ∠A = ∠B = ∠C = ∠D = 90° (определение прямоугольника). ∠ABN = ∠MCD = 45° (половины углов 90°). Значит, треугольники ABN, MCD – прямоугольные равнобедренные с равными катетами, поэтому эти треугольники равны и BN = CM
2) ∠B = 90°, из треугольника ABC: ∠ACB = 180° - 90° - 55° = 35°. BO = OC (св-во прямоугольника), значит, ∠CBO = ∠ACB = 35°, ∠COD = ∠CBO + ∠ACB = 70° (внешний угол к треугольнику BOC).
3) AO = OB, ∠OAB = ∠OCD = 60° (накрест лежащие углы), тогда треугольник AOB – равносторонний, BE – медиана. AO = 2OE = 8 (определение медианы), AC = 2AO = 16 (св-во параллелограмма).
4) ∠A = ∠B = ∠C = ∠D, тогда 4 маленьких треугольника равны по двум сторонам и углу между ними, откуда A₁B₁ = B₁C₁ = C₁D₁ = D₁A₁, A₁B₁C₁D₁ – ромб.