1. Дано: угол 2 = угол 1 + 34°; Найти: угол 3. Решение: Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1. Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение: угол 1 + угол 1 + 34° = 180°. Отсюда угол 1 = 73°. Значит, угол 3 = 73°. ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°. Найти: угол А, угол В. Рисунок к задаче - в приложении к ответу. Решение: Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B. Т.к. угол DCB = 37°, то угол B = 37°. Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB. Угол А = 180° - 90° - 37° = 53°. ответ: угол А = 53°, угол В = 37°.
Найти: угол 3.
Решение:
Угол 3 и угол 1 - соотвественные углы при параллельных прямых a и b и секущей c. Следовательно, угол 3 = углу 1.
Углы 1 и 2 - односторонние при параллельных прямых a и b и секущей c⇒ угол 1 + угол 2 = 180°. Но, по условию, угол 2 = угол 1 + 34°. Подставим это выражение:
угол 1 + угол 1 + 34° = 180°.
Отсюда угол 1 = 73°.
Значит, угол 3 = 73°.
ответ: 73°.
2. Дано: ΔАВС, угол С = 90°, CD || AB, угол DCB = 37°.
Найти: угол А, угол В.
Рисунок к задаче - в приложении к ответу.
Решение:
Угол DCB и угол B - накрест лежащие углы при параллельных прямых AB и DC и секущей BC ⇒ угол DCB = углу B.
Т.к. угол DCB = 37°, то угол B = 37°.
Угол A + угол В + угол ACB = 180° (по теореме о сумме углов треугольника), следовательно, угол A = 180° - угол В - угол ACB.
Угол А = 180° - 90° - 37° = 53°.
ответ: угол А = 53°, угол В = 37°.
Пирамида. ,
боковые , общую .
О V S h осн 3
1
, где Sосн –
; h .
Площадь полной поверхности S = Sосн + Sб.п,
Sосн основания; Sб.п
поверхности.
Правильная пирамида пирамида, основании лежит правильный многоугольник вершина проектируется
основания.
У правильной пирамиды:
- боковые ребра равны;
7
- боковые грани – равные равнобедренные треугольники;
- двугранные углы при ребрах основания равны;
- двугранные углы при боковых ребрах равны;
- плоские углы при вершине равны;
- все апофемы (высоты боковых граней, опущенные на ребра
основания) равны.
Площадь боковой поверхности правильной пирамиды:
Sб.п.прав.пир = lр , где l – апофема; р – полупериметр основания.
Sб.п.прав.пир =
cos
Sосн , где – двугранный угол при ребре основания.
Объяснение: