Точка А находится на положительной полуоси Ох, точка B находится на положительной полуоси Оу. Нарисуй прямоугольник АОВС и диагонали прямоугольника. Определи координаты вершин прягоульника и точки D пересечения диагоналей, если длина стороны ОА равна 11,9, а длина стороны ОВ равна 8,6
Расстоянием от точки до прямой является перпендикуляр, опущенный из точки на эту прямую. Расстояние от вершины А до прямой ВС - это биссектриса АD, которая для равностороннего треугольника является и медианой и высотой, а, значит, и перпендикуляром от А к ВС. Биссектриса АD делит угол ВАС на два равных угла по 30°. Расстояние от точки D до прямой AC - перпендикуляр и в треугольнике АDС является катетом, противолежащим углу 30° . Известно, что катет, противолежащий углу 30°, равен половине гипотенузы. Здесь гипотенузой треугольника АDС является АD. Следовательно, АD=6*2=12 см или иначе АD=6:sin30°=6:¹/₂=12 см [email protected]
Вроде, всё просто. Треугольник равносторонний, значит, все углы равны 60 гр. Все медианы, проведённые к основаниям, являются биссектрисами и высотами. Расстояние от точки до прямой - это перпендикуляр, проведи от точки D к прямой AC, назови точку M. Получим прямоугольный треугольник ADM. Угол ACD равен 60:2=30 гр., т.к. AD - также биссектриса, против угла 30 гр. лежит катет, который равен половине гипотенузы, гипотенуза в этом треугольнике - AD (искомое расстояние). Чтобы его найти, нужно 6 разделить на , получим 12. ответ: расстояние от вершины A до прямой BC равно 12.
Расстояние от вершины А до прямой ВС - это биссектриса АD, которая для равностороннего треугольника является и медианой и высотой, а, значит, и перпендикуляром от А к ВС.
Биссектриса АD делит угол ВАС на два равных угла по 30°.
Расстояние от точки D до прямой AC - перпендикуляр и в треугольнике АDС является катетом, противолежащим углу 30° .
Известно, что катет, противолежащий углу 30°, равен половине гипотенузы. Здесь гипотенузой треугольника АDС является АD.
Следовательно, АD=6*2=12 см
или иначе
АD=6:sin30°=6:¹/₂=12 см
[email protected]