В основании пирамиды DABC лежит прямоугольный треугольник ABC, угол C=90°, угол А=30°, BC=10. Боковые ребра пирамиды наклонены к плоскости основания под равными углами. Высота пирамиды равна 5. Найдите площадь боковой поверхности пирамиды. Если боковые реба пирамиды наклонены к плоскости основания под равными углами, то вокруг основания можно описать окружность, и основание высоты пирамиды находится в центре этой окружности. Центр О описанной вокруг прямоугольного треугольника окружности лежит в середине его гипотенузы. Катет ВС=10, противолежит углу 30°, след. гипотенуза АВ=2*10=20 Площадь боковой поверхности пирамиды - сумма площадей его граней, площадь каждой из них найдем по формуле S=ah. Для грани, основанием которой является гипотенуза, высота равна 5. S Δ ADB=DO*AB:2=5*20:2=50 Для треугольника CDB высота DK²=DO²+OK² ОК=АС:2 АС=АВ*sin (60)=10√3 ОК=5√3 DK=√(25+ 75)=10 S ΔCDB=10*10:2=50 Для АDC высота DM²=DO²+OM²=√50=5√2 S ADC=AC*DM:2=25√6 Площадь боковой поверхности пирамиды Sбок DАВС=S ADB+SCDB+S ADC=100+25√6
И. п семь тысяч семьсот семьдесят седьмая страница
Р. п семь тысяч семьсот семьдесят седьмой страницы
Д. п семь тысяч семьсот семьдесят седьмой странице
В. п семь тысяч семьсот семьдесят седьмую страницу
Т. п семь тысяч семьсот семьдесят седьмой страницей
П. п о семь тысяч семьсот семьдесят седьмой странице
И. п. пять десятых грамма
р. п пять десятых грамма
Д. п пять десятому грамму
в. п пять десятых грамма
т. п пять десятыми граммами
п. п о пять десятых грамма
и. п. сто друзей
р. п ста друзей
Д. п ста друзьям
в. п сто друзей
т. п ста друзьями
п. п о ста друзьях
и. п. сорок восемь городов
р. п сорока восьми городов
Д. п. сорока восьми городам
в. п. сорок восемь городов
т. п. сорока восьми городами
п. п о сорока восьми городов
Если боковые реба пирамиды наклонены к плоскости основания под равными углами, то вокруг основания можно описать окружность, и основание высоты пирамиды находится в центре этой окружности.
Центр О описанной вокруг прямоугольного треугольника окружности лежит в середине его гипотенузы.
Катет ВС=10, противолежит углу 30°, след. гипотенуза
АВ=2*10=20
Площадь боковой поверхности пирамиды - сумма площадей его граней,
площадь каждой из них найдем по формуле
S=ah.
Для грани, основанием которой является гипотенуза, высота равна 5.
S Δ ADB=DO*AB:2=5*20:2=50
Для треугольника CDB высота
DK²=DO²+OK²
ОК=АС:2
АС=АВ*sin (60)=10√3
ОК=5√3
DK=√(25+ 75)=10
S ΔCDB=10*10:2=50
Для АDC высота
DM²=DO²+OM²=√50=5√2
S ADC=AC*DM:2=25√6
Площадь боковой поверхности пирамиды
Sбок DАВС=S ADB+SCDB+S ADC=100+25√6