1) 6*3=18(см) высота 2) 18*6:2=54(см²) площадь треугольника
пусть С-гипотенуза, А и В катеты С²=А²+В²=4²+3²=16+9=25 С=√25=5 С=5 5 см гипотенуза 4 * 3 : 2 = 6(см²) площадь треугольника
Площадь ромба равна произведению его диагоналей: 6 * 8 =48(см²) площадь Диагонали ромба в точке пересечения делятся пополам и диагонали ромба разбивают ромб на 4 одинаковых прямоугольных треугольника, гипотенуза каждого из них является стороной ромба и равна: С²=4²+3²=25 С=√25=5 Сторона ромба=5 см 5 * 4 = 20 (см) периметр ромба
2) 18*6:2=54(см²) площадь треугольника
пусть С-гипотенуза, А и В катеты
С²=А²+В²=4²+3²=16+9=25
С=√25=5
С=5 5 см гипотенуза
4 * 3 : 2 = 6(см²) площадь треугольника
Площадь ромба равна произведению его диагоналей:
6 * 8 =48(см²) площадь
Диагонали ромба в точке пересечения делятся пополам и диагонали ромба разбивают ромб на 4 одинаковых прямоугольных треугольника, гипотенуза каждого из них является стороной ромба и равна:
С²=4²+3²=25
С=√25=5
Сторона ромба=5 см
5 * 4 = 20 (см) периметр ромба
Условие задачи записано неточно.
Правильно:
В треугольнике АВС АВ=4, ВС=6, ВD - биссектриса; угол АВС = 45°. Найдите площади треугольников АВD и СВD
a)
Одна из формул площади треугольника
S=0,5•a•b•sin α, где а и b - стороны, α – угол между ними.
S (АВС)=0,5•4•6•√2/2=6√2
б)
В треугольниках ABD и CBD высоты из В к основаниям совпадают. Площади треугольников с равными высотами относятся как их основания.
Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные двум другим сторонам (свойство) ⇒
АD:DC=AB:CB=2:3 ⇒
S(∆ ABD):S(∆BCD)=АD:DC=AB:CB=2:3
S(∆ ABD)+S(∆BCD)=5 частей= 6√2
S(∆ ABD)=(1/5•6√2)•2=2,4√2(ед.площади)
S(∆BCD)=(1/5•6√2)•3=3,6√2 (ед. площади).