Угол между прямой и плоскостью - угол между наклонной и её проекцией на плоскость.
Чтобы найти проекцию наклонной B1C на плоскость (AA1C) спроецируем точку B1, то есть проведем перпендикуляр B1H к плоскости (AA1C).
Прямая перпендикулярна плоскости если она перпендикулярна двум пересекающимся прямым в плоскости.
Любая прямая в плоскости (A1B1C1) перпендикулярна СС1 (боковые ребра прямой призмы перпендикулярны основаниям). Поэтому достаточно опустить перпендикуляр B1H на A1С1.
Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
Угол между прямой и плоскостью - угол между наклонной и её проекцией на плоскость.
Чтобы найти проекцию наклонной B1C на плоскость (AA1C) спроецируем точку B1, то есть проведем перпендикуляр B1H к плоскости (AA1C).
Прямая перпендикулярна плоскости если она перпендикулярна двум пересекающимся прямым в плоскости.
Любая прямая в плоскости (A1B1C1) перпендикулярна СС1 (боковые ребра прямой призмы перпендикулярны основаниям). Поэтому достаточно опустить перпендикуляр B1H на A1С1.
B1H⊥A1С1, B1H⊥CC1 => B1H⊥(AA1C)
HC - проекция наклонной B1C на плоскость (AA1C)
B1CH - искомый угол
△B1CH - прямоугольный (B1H⊥HC)
7) B1H =√3/2 (высота в равностороннем △A1B1C1)
B1C =√3 (△B1CB, теорема Пифагора)
sin(B1CH) =B1H/B1C =1/2
B1CH=30
8) HC1 =4 (B1H высота и медиана)
HC =5 (△HCC1 египетский)
cos(B1CH) =HC/B1C =5/10 =1/2
B1CH=60
Пусть первая диагональ ромба d₁, а вторая диагональ ромба d₂.
Тогда d₁/d₂ = 3/4.
Тогда d₁ = 3*t, а d₂ = 4*t.
Найдем формулу площади ромба, разобьем ромб на два треугольника (по первой диагонали), зная что диагонали ромба перпендикулярны и точкой пересечения делятся пополам,
тогда S = S₁+S₂ = (1/2)*d₁*(d₂/2) + (1/2)*d₁*(d₂/2) = 2*(1/2)*d₁*(d₂/2) =
= d₁*d₂/2.
S = d₁*d₂/2.
d₁ = 3t,
d₂ = 4t,
S = (3t)*(4t)/2 = 6*t² = 54 см², отсюда найдем t
t² = 54/6 см² = 9 см²,
t = √( 9см²) = 3 см.
Тогда d₁ = 3t = 3*3см = 9см,
d₂ = 4t = 4*3см = 12 см.
ответ. 9см и 12см.