В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана (рис. 22).
Доказать: CD — биссектриса и высота.
Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ).
Из равенства треугольников CBD и CAD следует равенство углов
Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.
Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:
1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
Дано: АВС - равнобедренный треугольник АО - медиана АС - основание АВ + ВО = 15 см АС + СО = 9 см Найти: АВ - ? ВС - ? АС - ? Решение : Составляем уравнение х - АВ ( за х берем сторону В ) ВО = СО (так как медиана делит сторону ВС пополам значит отрезки равны) АВ = ВС ( так как у нас равнобедренный треугольник ) Значит отрезок ВО - 0.5 х или 1/2 х и отрезок СО - 0.5 х или 1/2 х. составляем уравнение: х + 1/2 х = 15 1.5 х = 15 х = 10 Значит сторона АВ = 10 см Значит сторона ВС тоже равна 10 см а отрезки ВО = СО = 5 см Отсюда следует, что АС+СО = 9см 9 - 5 = 4 см Значит что сторона АС равна 4 см ответ : АВ = ВС = 10 см , ас = 4 СМ.
Дано: А АВС — равнобедренный треугольник, АВ — основание, CD — медиана (рис. 22).
Доказать: CD — биссектриса и высота.
Доказательство. Треугольники CAD и CBD равны но второму признаку равенства треугольников (стороны АС и ВС равны, так как АВС — равнобедренный. Углы CAD и CBD равны как углы при основании равнобедренного треугольника. Стороны AD и BD равны, поскольку D — середина отрезка АВ).
Из равенства треугольников CBD и CAD следует равенство углов
Так как углы ACD и BCD равны, то CD — биссектриса. Поскольку углы ADC и BDC смежные и равны друг другу, они прямые. Следовательно, отрезок CD является также высотой треугольника АВС. Теорема доказана.
Таким образом, установлено, что биссектриса, медиана и высота равнобедренного треугольника, проведенные к основанию, совпадают. Поэтому справедливы также следующие утверждения:
1. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
2. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
вот так-то
АВС - равнобедренный треугольник
АО - медиана
АС - основание
АВ + ВО = 15 см
АС + СО = 9 см
Найти:
АВ - ?
ВС - ?
АС - ?
Решение :
Составляем уравнение
х - АВ ( за х берем сторону В )
ВО = СО (так как медиана делит сторону ВС пополам значит отрезки равны)
АВ = ВС ( так как у нас равнобедренный треугольник )
Значит отрезок ВО - 0.5 х или 1/2 х
и отрезок СО - 0.5 х или 1/2 х.
составляем уравнение:
х + 1/2 х = 15
1.5 х = 15
х = 10
Значит сторона АВ = 10 см
Значит сторона ВС тоже равна 10 см
а отрезки ВО = СО = 5 см
Отсюда следует, что АС+СО = 9см
9 - 5 = 4 см
Значит что сторона АС равна 4 см
ответ : АВ = ВС = 10 см , ас = 4 СМ.