Пусть даны два прямоугольных треугольника АВС и А1В1С1, у которых <А=<А1=90°, <C=<C1 и высоты АН и А1Н1 равны. Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1. Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные. Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1, a <C1A1H1=<B1. Но <C=<C1 a <B=<B1. Значит <BAH=<B1A1H1, a <CAH=<C1A1H1. Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1. Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1. ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1. Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак). Что и требовалось доказать.
Ну тогда так: Раз площадь квадрата равна 36, тогда сторона квадрата равна 6 см.Диагонали квадрата пересекаются в центре квадрата. Опустим перпендикуляр из одной стороны каадрата на противоположную сторону так, чтобы он через точку пересечения диагоналей. Получилась фигура-прямоугольник так как все углы прямые. У прямоугольника противоположные стороны равны. А точка пересечения диагоналей делит сторону нашего прямоугольника пополам. Так как сторона равна 6 см, то перпендикуляр ( отрезок соединяющий точку пересечения диагоналей со стороной квадрата) будет равен половине стороны квадрата . 6:2=3 см Значит расстояние от точки пересечения диагоналей до построения( то есть самого квадрата) будет равно 3 си
Тогда и <B=<B1, так как сумма острых углов прямоугольного треугольника равна 90°, то есть <B=90-С, а <D1=90-С1.
Высоты АН и А1Н1 делят треугольники АВС и А1В1С1 на подобные.
Значит <BAH=<C, a <CAH=<B. Точно так же <B1A1H1=<C1,
a <C1A1H1=<B1. Но <C=<C1 a <B=<B1.
Значит <BAH=<B1A1H1, a <CAH=<C1A1H1.
Тогда прямоугольные треугольники АВН и А1В1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<BAH=<B1A1H1). Значит ВН=В1Н1.
Прямоугольные треугольники АСН и А1С1Н1 равны по катету (АН=А1Н1 -дано) и прилежащему острому углу (<СAH=<С1A1H1). Значит СН=С1Н1.
ВС=ВН+СН, В1С1=В1Н1+С1Н1. Отсюда ВС=В1С1.
Гипотенузы треугольников ВС и В1С1 равны, острые углы их тоже равны, значит треугольники АВС и А1В1С1 равны по равенству гипотенузы и острому углу (третий признак).
Что и требовалось доказать.
Раз площадь квадрата равна 36, тогда сторона квадрата равна 6 см.Диагонали квадрата пересекаются в центре квадрата. Опустим перпендикуляр из одной стороны каадрата на противоположную сторону так, чтобы он через точку пересечения диагоналей. Получилась фигура-прямоугольник так как все углы прямые. У прямоугольника противоположные стороны равны. А точка пересечения диагоналей делит сторону нашего прямоугольника пополам. Так как сторона равна 6 см, то перпендикуляр ( отрезок соединяющий точку пересечения диагоналей со стороной квадрата) будет равен половине стороны квадрата .
6:2=3 см
Значит расстояние от точки пересечения диагоналей до построения( то есть самого квадрата) будет равно 3 си