216см2
Объяснение:
Центр окружности, описанной около равнобедренной трапеции, который находится на большем основании, делит его на две равные части:
AO=OD=R=1/2×AD=1/2×26=13 см
2. В равнобедренной трапеции AE и FD можно найти, зная основания:
AE=FD=(AD−BC)/2=(26-10)/2=8
Вычисляем EO и OF:
EO=OF=R−AE=13−8=5 см
3. Так как ΔEBO — прямоугольный, то высоту трапеции BE можно найти по теореме Пифагора:
BE=R2−EO2−−−−−−−−√=132−52−−−−−−−√=169−25−−−−−−−√=144−−√=12 см
4. Вычисляем площадь трапеции:
S=AD+BC2×BE=(26+10)/2×12=18×12=216см2
ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.
h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.
Сторона а основания равна:
а = h/cos 30° = (3√3/4)/(√3/2) = 3/2.
Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.
Основание пирамиды вписывается в шар по окружности радиуса Ro.
Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.
Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.
Для шара это будет диаметральное сечение.
Радиус шара Rш = (abc)/(4S).
Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).
Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.
Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.
Объём шара V = (4/3)πR³ = (4/3)π куб
216см2
Объяснение:
Центр окружности, описанной около равнобедренной трапеции, который находится на большем основании, делит его на две равные части:
AO=OD=R=1/2×AD=1/2×26=13 см
2. В равнобедренной трапеции AE и FD можно найти, зная основания:
AE=FD=(AD−BC)/2=(26-10)/2=8
Вычисляем EO и OF:
EO=OF=R−AE=13−8=5 см
3. Так как ΔEBO — прямоугольный, то высоту трапеции BE можно найти по теореме Пифагора:
BE=R2−EO2−−−−−−−−√=132−52−−−−−−−√=169−25−−−−−−−√=144−−√=12 см
4. Вычисляем площадь трапеции:
S=AD+BC2×BE=(26+10)/2×12=18×12=216см2
ответ:В треугольной пирамиде проекция бокового ребра L на основание совпадает с отрезком, равным (2/3) высоты h треугольника в основании пирамиды.
h =(3/2)* (L*cos 60°) = (3/2)*(√3*(1/2)) = 3√3/4.
Сторона а основания равна:
а = h/cos 30° = (3√3/4)/(√3/2) = 3/2.
Высота пирамиды H = L*sin 60° = √3*(√3/2) = 3/2.
Основание пирамиды вписывается в шар по окружности радиуса Ro.
Ro = (1/3)h/(sin 30°) = (1/3)*(3√3/4)/(1/2) = √3/2.
Теперь переходим к рассмотрению осевого сечения пирамиды через два боковых ребра, развёрнутых в одну плоскость.
Для шара это будет диаметральное сечение.
Радиус шара Rш = (abc)/(4S).
Здесь a и b - боковые рёбра, с - диаметр описанной около основания пирамиды окружности (с = 2Ro = √3).
Сечение S = (1/2)H*(2Ro) = (1/2)*(3/2)*√3 = 3√3/4.
Получаем Rш = (√3*√3*√3)/(4*(3√3/4)) = 1.
Объём шара V = (4/3)πR³ = (4/3)π куб
Объяснение: