Провести полное исследование функции y=(-1)x^2/x+3, а именно: а)найти область определения функции;
б)найти точки пересечения графика функции с координатными осями;
в)исследовать функцию на четность и нечетность;
г)исследовать функцию на непрерывность, определить характер точек разрыва;
д)исследовать функцию на наличие асимптот;
е)исследовать функцию на экстремумы;
ж)исследовать функцию на выпуклость, вогнутость, наличие точек перегиба;
з)построить график функции.
n=-1
m=1.5
Объяснение:C(2m+n;7;-n) , D(-3;-5;m-3). CA÷AD=2÷3. Так как А относится к оси Оу, то Xa=0, Za=0.
По формуле: Xa=(Xc+(2÷3)×Xd)÷(1+(2÷3)) , Таже формула с Z.
Xa=(2m+n+(2÷3)×(-3))÷(1+(2÷3))=(2m+n-2)÷(5÷3)=(6m+3n-6)÷5
Za=(-n+(2÷3)×(m-3))÷(1+(2÷3))=((2m-6-3n)÷3)÷(5÷3)=(2m-6-3n)÷5
/ (2m-6-3n)÷5=0 / 2m-6-3n=0 / n=2-2m / n=-1
| ⇒| ⇒| ⇒|
\ (6m+3n-6)÷5=0 \ 6m+3n-6=0 \ 2m-3×(2-2m)=6 \ m=1.5
÷ - знак деления
× - знак умножения
/
| - скобка
\
кут E=120°
кут F=120°
кут N=60°
кут F=60°
Объяснение:
эта трапеция равнобедренная (NE=FM), это можно сказать ещё с условия задачи
точкой O я пометила точку пересечения EM и NF
они являются диагонали, бисектрисами и и высотами
кут NOM равен 120° за условием, значит кут EOF тоже равен 120° (как вертикальные куты), а кут EON равен 60°
рассмотрим треугольник NOM
в нём кут N=M=(180°-120°)/2=30°
рассмотрим треугольник EOF
в нём кут E=куту F=(180°-120°)/2=30°
рассмотрим треугольник NEO
в треугольнику NEO кут E=90°
значит треугольник прямоугольный
кут O=60°
кут N=30°
продолжим рассматривать трапецию
в ней кут N=куту M=кут ENO+кут ONM=30°+30°=60°
кут E=куту F=кут NEO+кут OEF=90°+30°=120°