1) Находим на что разделяет биссектриса каждый угол, первый - на 15, второй - на 35. Теперь складываем 15+35=50. Это угол между биссектрисами. 2) Пусть одна часть х, тогда один угол будет 2х, а другой 17х. Получаем уравнение: 2х+17х=180 19х=180 х=180/19 Больший угол = 17* 180/19=161 1/19. Странный ответ, ну да ладно. 3) две прямые образуют угол в 360 градусов. Пусть неизвестный угол х, получаем уравнение: х+240=360 х=100. При пересечении образуются попарно равные углы, значит два изх них будут по 100, а два других по 140/2=70
2) Пусть одна часть х, тогда один угол будет 2х, а другой 17х. Получаем уравнение:
2х+17х=180
19х=180
х=180/19
Больший угол = 17* 180/19=161 1/19. Странный ответ, ну да ладно.
3) две прямые образуют угол в 360 градусов. Пусть неизвестный угол х, получаем уравнение:
х+240=360
х=100.
При пересечении образуются попарно равные углы, значит два изх них будут по 100, а два других по 140/2=70
Решение, а) По условию Z2 + Z4 = 220°. Эти углы вертикальные, поэтому Z2 = Z4 = 110°.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°, откуда Z1 = 180° -- 110° = 70°.
Углы 3 и 1 вертикальные, поэтому Z3 = Z1 = 70°.
б) Углы 1 и 3, а также 2 и 4 вертикальные, поэтому Z3 = Zl, Z4 = = Z2. Подставив эти выражения в данное равенство, получим:
3(2Z1) = 2Z2,
или
3Z1 =Z2.
Углы 1 и 2 смежные, поэтому Zl + Z2 = 180°. Из этих двух равенств находим Z1 и Z2: Z1 = 45°, Z2 = 135°.
Z3 = Z1, поэтому Z3 = 45°; Z4 = Z2, поэтому Z4 = 135°
в) По условию Z2 — Z1 = 30°. Эти углы смежные, следовательно, Zl + Z2 = 180°. Из этих двух равенств имеем: Z1 = 75°, Z2 = 105°.
Z3 = Z1, поэтому Z3 = 75°; Z4 = Z2, поэтому Z4 = 105°.
ответ, a) Zl = Z3 = 70°, Z2 = Z4 = 110°; б) Zl =Z3 = 45°, Z2 = = Z4 = 135°; в) Zl = Z3 = 75°, Z2 = Z4 = 105°.