Дано: АВСD - ромб, S = 96 см², BD = 4x, AC = 3x, Знайти: Pabcd. Решение: Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см. С прямокутного трикутника АОВ: АО = 6 см, ВО = 8см. За т. Піфагора:
Прямые ВС и АD параллельны, так как сумма внутренних односторонних углов А и В при прямых ВС и АВ и секущей АВ в сумме равны 180° (признак параллельности). Четырехугольник АВСD - параллелограмм, следовательно его диагонали в точке пересечения делятся пополам. ВМ=ОD и ВМ=КD, а <OBM=<ODK как накрест лежащие при параллельных прямых. Значит треугольники ОВМ и ОDK равны по двум сторонам и углу между ними. В равных треугольниках против равных углов лежат равные стороны. ОМ=ОD, что и требовалось доказать.
Знайти: Pabcd.
Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см.
За т. Піфагора:
Периметр ромба дорівнює добутку 4 сторін
Відповідь: 40 см.
Четырехугольник АВСD - параллелограмм, следовательно его диагонали в точке пересечения делятся пополам.
ВМ=ОD и ВМ=КD, а <OBM=<ODK как накрест лежащие при параллельных прямых. Значит треугольники ОВМ и ОDK равны по двум сторонам и углу между ними. В равных треугольниках против равных углов лежат равные стороны.
ОМ=ОD, что и требовалось доказать.