Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
Образующая усеченного конуса равна 2√3 см, а радиус меньшего основания √3 см. Найдите радиус сферы, описанной вокруг данного усеченного конуса, если угол между его образующей и большим основанием равен 60 °.
Объяснение:
В осевом сечении данной комбинации тел получается равнобедренная трапеция , вписанная в окружность.
АВСМ-равнобедренная трапеция , О-центр описанной окружности., АВ=СМ=2√3, ВС=2√3, ∠СМА=60°. Найти R.
Пусть ВН⊥АМ, СК⊥АМ.Тогда НВСК-прямоугольник, ВС=НК=2√3 см
ΔСКМ прямоугольный. cos60°=КМ/(2√3) , КМ=√3 см ⇒АН=√3см,
sin60°=CК/(2√3) , СК=3 см .
Найдем АК=АН+НК=3√3 (см) и АМ=2√3+2√3=4√3 (см).
ΔАСК-прямоугольный , по т. Пифагора
АС=√ ( (3√3)²+3²)=√36=6 (см)
ΔАСМ , вычислим АМ² , АС²+СМ², затем сравним.
АМ²=(4√3)²=48,
АС²+СМ²=6²+(2√3)²=36+12=48.
Получили АМ²=АС²+СМ² ⇒ ΔАСМ-прямоугольный , по т. обратной т. Пифагора и ∠АСМ=90° ⇒ центр описанной окружности лежит на середине АМ ⇒
∠АВН = 30°; ∠ВАР = 45°.
Пошаговое объяснение:
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
В прямоугольном треугольнике АВН:
Sin(∠АВН) = АН/АВ =8/16 = 1/2. => ∠АВН = 30°
В прямоугольном треугольнике АРВ:
Sin(∠ВАР) = ВР/АВ =8√2/16 = √2/2. => ∠ВАР = 45°.
Образующая усеченного конуса равна 2√3 см, а радиус меньшего основания √3 см. Найдите радиус сферы, описанной вокруг данного усеченного конуса, если угол между его образующей и большим основанием равен 60 °.
Объяснение:
В осевом сечении данной комбинации тел получается равнобедренная трапеция , вписанная в окружность.
АВСМ-равнобедренная трапеция , О-центр описанной окружности., АВ=СМ=2√3, ВС=2√3, ∠СМА=60°. Найти R.
Пусть ВН⊥АМ, СК⊥АМ.Тогда НВСК-прямоугольник, ВС=НК=2√3 см
ΔСКМ прямоугольный. cos60°=КМ/(2√3) , КМ=√3 см ⇒АН=√3см,
sin60°=CК/(2√3) , СК=3 см .
Найдем АК=АН+НК=3√3 (см) и АМ=2√3+2√3=4√3 (см).
ΔАСК-прямоугольный , по т. Пифагора
АС=√ ( (3√3)²+3²)=√36=6 (см)
ΔАСМ , вычислим АМ² , АС²+СМ², затем сравним.
АМ²=(4√3)²=48,
АС²+СМ²=6²+(2√3)²=36+12=48.
Получили АМ²=АС²+СМ² ⇒ ΔАСМ-прямоугольный , по т. обратной т. Пифагора и ∠АСМ=90° ⇒ центр описанной окружности лежит на середине АМ ⇒
R=2√3 cv