Прям ! дан ∆ abc, угол с=90градусов, ab = 20см, угол b= 30градусов, с центром в точке ,а проведена окружность, какой должен быть ее радиус что бы: а) окружность касалась прямой bc. б) окружность не имела общих точек с прямой bc. в) окружность имела с прямой bc 2 общих точек.
Шесты АВ и ДС как основания образуют прямоугольную трапецию АВСД, а пересечение канатов ВД и СА есть не что иное, как пересечение диагоналей прямоугольной трапеции.
Как известно, отрезок, параллельный основаниям и проходящий через пересечение диагоналей прямоугольной трапеции делится точкой пересечения пополам, и если АВ=х, ДС=у, то длина его равна 2·х·у/(х + у).
Исходя из этого: ОК=2·х·у/(х + у)÷2=х·у/(х + у)
1) ОК=(х·у)÷(х + у)
Как видно, длина ОК никаким образом не зависит от расстояний между шестами, а лишь от их высоты.
2) Если AB=х=2 м, а DC=у=8 м, то ОК=(2·8)÷(2+8)=1,6 м
ответ: длина шеста ОК=1,6 м
1. Координатная плоскость состоит из: двух взаимно – перпендикулярных осей
2. Координатная система делит плоскость в) на 4 четверти.
3. Начало координат имеет координаты:а) (0;0);
4. Точка, лежащая в I четверти, имеет координаты: а) (x; y);если х и у - положительные числа
5. Точка, лежащая в II четверти, имеет координаты: в) (-x; y). если х и у положительные числа
6. Точка, лежащая в III четверти, имеет координаты:б) (-x;-y);если х и у положительные числа
7. Точка, лежащая в I V четверти, имеет координаты:в) (x;-y).если х и у положительные числа
8. Точка, лежащая на OX , имеет координаты: а) (-x;0);
б) (x;0);
9. Точка, лежащая на Oy , имеет координаты:а) (0;y);
б) (0;-y);
10. Угол в каждой четверти равен:в) 90⁰.