Основание пирамиды ромб ABCD, НО - высота пирамиды, НМ - высота на грани пирамиды. Vпирамиды=⅓h*a² Необходимо найти сторону ромба. Площадь ромба через радиус вписанной окружности можно найти по двум формулам. S= 4r²/sinα=2аr. Найдём площадь по первой формуле, где альфа это острый угол ромба, синус 30 градусов равен ½. S=4×1:½=8 По второй формуле вычислим сторону ромба. 8=2а×1 а=4 Рассмотрим треугольник МОН, образованный высотой пирамиды, высотой грани и радиусом вписанной окружности. Он прямоугольный и угол НМО =45 градусов по условию, следовательно и второй угол равен 45 градусов по свойству о сумме углов треугольника. Треугольник равнобедренный и его катеты равны, т.е. МО=ОН=1см. V=⅓×1×16=16/3
Точка касания окружности вписанной в равнобедренную трапецию делит ее боковую сторону на отрезки длиной 9 см и 16 см. Найдите площадь трапеции
Объяснение:
АВСD-трапеция АВ=СD, точки касания расположены на сторонах
А-Е-В, В-К-С, С-Т-D, А-Н-D ,АЕ=16 см, ЕВ=9 см.
АВ=16+9=25 см. Значит СD=25 см.
S(трап.)= 1/2*Р*r , r-радиус вписанной окружности .
По свойству отрезков касательных АЕ=АН=DT=DH=16 см и
ВК=ВЕ=СК=СТ=9 см.
Р=25+25+(9+9)+(16+16)=100 (см)
Радиус вписаной окружности равен половинге высоты трапеции.
Пусть ВМ⊥АD ,ΔАВМ-прямоугольный , по т. Пифагора ВМ=√(25²-7²)=√576=24 (см)
Тогда r=1/2*24=12(см).
S(трап.)=1/2*100*12=600 (см²)