Медиана тр-ка делит тр-к на два равновеликих. То есть Sabm = Smbc = 1/2(Sabc)Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. То есть ВР/РС = 1/3. В таком же отношении делится биссектрисой и площадь тр-ка, т.е Sabp/Sapc = 1/3. То есть Sabp = 1/4(Sabc), а Sapc = 3/4(Sabc). В тр-ке АВМ та же биссектриса делит площадь тр-ка АВМ в отношении 1:1,5 (так как АМ = 1/2 АС, потому что ВМ - медиана). Отсюда Sakm = 3/4*Sabm = 1/2:4*3 = 3/8(Sabc) Smkpc = Sapc-Sakm = 3/4 - 3/8 = 3/8.
1) В основании 6-угольной пирамиды лежит правильный 6-угольник, который состоит из 6 равносторонних треугольников. Если сторона равна 4, то площадь S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3 Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3 Эта высота h - один катет прямоугольного треугольника, высота самой пирамиды H - второй катет, а апофема L - гипотенуза L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии. Это можно узнать и самому. Площадь боковой поверхности S(бок) = 6*a*L/2 = 3*4*4 = 48. Площадь полной поверхности S = S(осн) + S(бок) = 48 + 24√3 Объем пирамиды V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3
2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат. И опять же, апофему можно вычислить, зная сторону основания и высоту. S(осн) = 8^2 = 64 S(бок) = 4*a*L/2 = 2*8*5 = 80 Площадь полной поверхности S = S(осн) + S(бок) = 64 + 80 = 144 Объем пирамиды V = 1/3*S(осн)*H = 1/3*64*3 = 64
3) Если площадь основания (квадрата) равна 36, то сторона а = 6 И опять же, апофему можно вычислить, зная сторону основания и высоту. S(бок) = 4*a*L/2 = 2*6*6 = 72 Площадь полной поверхности S = S(осн) + S(бок) = 36 + 72 = 108 Объем пирамиды V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3
Тогда Sakm/Smkpc = (3/8):(3/8) = 1/1.
Если сторона равна 4, то площадь
S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3
Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3
Эта высота h - один катет прямоугольного треугольника,
высота самой пирамиды H - второй катет, а апофема L - гипотенуза
L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии.
Это можно узнать и самому.
Площадь боковой поверхности
S(бок) = 6*a*L/2 = 3*4*4 = 48.
Площадь полной поверхности
S = S(осн) + S(бок) = 48 + 24√3
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3
2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат.
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(осн) = 8^2 = 64
S(бок) = 4*a*L/2 = 2*8*5 = 80
Площадь полной поверхности
S = S(осн) + S(бок) = 64 + 80 = 144
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*64*3 = 64
3) Если площадь основания (квадрата) равна 36, то сторона а = 6
И опять же, апофему можно вычислить, зная сторону основания и высоту.
S(бок) = 4*a*L/2 = 2*6*6 = 72
Площадь полной поверхности
S = S(осн) + S(бок) = 36 + 72 = 108
Объем пирамиды
V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3