ответ:Площадь треугольника=1/2 а*h; где h-высота, а-сторона, к которой проведена высота;
Проведем высоту к стороне которая равнв 9 см(ВС). Т к образовался прямоугольный треугольник АВЕ с углом в 30 градусов и известна длина гипотенузы (АВ), то АЕ=12/2=6см ( т к против угла в 30градусов лежит катет равный половине гипотенузы). Найдем площадь АВС=1/2*9*6=27см^2
ответ по проще:Построим высоты из вершины А, что бы найти площадь треугольника. Получим ВСТ с гипотинузой 9 см, и углом прилежащей к ней в 30 градусов, следовательно ТВ=4.5 см, т.к. катет лежащий на против угла в 30 градусов в 2 раза меньше гипотенузы. Находим площадь по формуле S=1/2*ah, S=1/2* 4.5*12=27 см2.
ответ:Площадь треугольника=1/2 а*h; где h-высота, а-сторона, к которой проведена высота;
Проведем высоту к стороне которая равнв 9 см(ВС). Т к образовался прямоугольный треугольник АВЕ с углом в 30 градусов и известна длина гипотенузы (АВ), то АЕ=12/2=6см ( т к против угла в 30градусов лежит катет равный половине гипотенузы). Найдем площадь АВС=1/2*9*6=27см^2
ответ по проще:Построим высоты из вершины А, что бы найти площадь треугольника. Получим ВСТ с гипотинузой 9 см, и углом прилежащей к ней в 30 градусов, следовательно ТВ=4.5 см, т.к. катет лежащий на против угла в 30 градусов в 2 раза меньше гипотенузы. Находим площадь по формуле S=1/2*ah, S=1/2* 4.5*12=27 см2.
ответ: S=27 см2(в квадрате)
Объяснение: Если то удачи в продвижение
Относительно: 1)начала координат:
А(0; 1) А1 (0; -1)
В(2; 1) В1(-2; -1)
С(-2; 3) С1(2; -3)
2) оси Ох:
А(0; 1) А1 (0; -1)
В(2; 1) В1(2; -1)
С(-2; 3) С1(-2; -3)
3) оси Оу.:
А(0; 1) А1 (0; 1)
В(2; 1) В1(-2; 1)
С(-2; 3) С1(2; 3)
А(2;1), B(5;4), C(11;-2), D(8;-5).1)Определите координаты центра симметрии.
Центр симметрии находится на середине диагонали, например, АС,:
О((2+11)/2=6,5; (1+(-2))/2=-0,5) = (6,5; -0,5)
2) Уравнение осей симметрии этого прямоугольника:
Оси параллельны сторонам и проходят через центр симметрии.
Уравнение прямой АВ:
.
Выразим относительно у:
.
В уравнении оси коэффициент при х равен коэффициенту прямой АВ и равен 1.
Уравнение оси имеет вид у = х + в.
Для нахождения параметра в поставим координаты центра в полученное уравнение: -0,5 = 6,5 + в.
Отсюда в = -0,5 - 6,5 = -7.
Получаем уравнение оси симметрии, параллельной стороне АВ: у = х - 7.
Уравнение прямой ВС:
В уравнении оси коэффициент при х равен коэффициенту прямой DC и равен -1.
Уравнение оси имеет вид у = -х + в.
Для нахождения параметра в поставим координаты центра в полученное уравнение: -0,5 = 6,5*(-1) + в.
Отсюда в = -0,5 + 6,5 =6.
Получаем уравнение оси симметрии, параллельной стороне АВ: у = -х + 6.
Объяснение: