Расстояние от точки К до прямой LM — это высота, проведённая из вершины К на сторону LM. Обозначим высоту через h. Треугольник КLM прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. Гипотенуза LM — с, тогда катет КL — 1/2 с. Площадь треугольника равна половине произведения катетов. Один катет — 1/2 с, другой — 24,8 S=1/2*1/2c*24,8=6,2с Площадь так же равна половине произведения высоты (h) на основание (c). S=1/2*h*c Приравняем правые части 6,2с=1/2*h*c h=6,2*2=12,4 ответ 12,4 см
Обозначим высоту через h.
Треугольник КLM прямоугольный.
В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы.
Гипотенуза LM — с, тогда катет КL — 1/2 с.
Площадь треугольника равна половине произведения катетов.
Один катет — 1/2 с, другой — 24,8
S=1/2*1/2c*24,8=6,2с
Площадь так же равна половине произведения высоты (h) на основание (c).
S=1/2*h*c
Приравняем правые части
6,2с=1/2*h*c
h=6,2*2=12,4
ответ 12,4 см
Виділяємо повні квадрати:
для x: 5 (x²-2 * 3x + 3²) -5 * 3² = 5 (x-3) ²-45,
для y: 9 (y² + 2 * 1y + 1) -9 * 1 = 9 (y + 1) ²-9.
В результаті отримуємо: 5 (x-3) ² + 9 (y + 1) ² = 45
Розділимо всі вираз на 45: ((x-3) ² / 9) + ((y + 1) ² / 5) = 1.
Параметри кривої - це еліпс, його півосі a = 3 і b = √5.
Центр еліпса в точці: C (3; -1)
Координати фокусів F1 (-c; 0) і F2 (c; 0), де c - половина відстані між фокусами: F1 (-2; 0), F2 (2; 0). з = √ (9 - 5) = + -√4 = + -2.
З урахуванням центру, координати фокусів рівні:
F1 ((- 2 + 3) = 1; -1), F2 ((2 + 3) = 5; -1).
Ексцентриситет дорівнює: е = с / а = 2/3.
Внаслідок нерівності c <a ексцентриситет еліпса менше 1.