В тр-ке ABC: AC=CB=10см, угол а=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см найти расстояние от K до AC рассмотрим образованную пирамиду АВСК, КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС, По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН. рассмотрим основание пирамиды - треугольник АВС, Он равнобедренный ас=ВС=10 с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ: CM=sqrt(AC2-AM2) CM=sqrt(100-25)=sqrt75=5sqrt3 BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны: АН/АМ=НВ/МС=АВ/АС НВ/МС=АВ/АС НВ=МС*АВ/АС НВ=5*(2*5sqrt3)/10=5sqrt3 Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН: KH2=KB2+HB2 KH=sqrt(25+75)=sqrt100=10 (см)
Обозначения. Для внешних касательных точки касания А и В ("сверху"), А1 и В1 ("снизу"), внутренняя касательная пересекает внешние в точках К (c прямой АВ) и K1 (с прямой А1В1). С - "верхняя" точка касания внутренней касательной, С1 - "нижняя".
Получается вот что - одной окружности (ну, пусть слева на чертеже) касательные касаются в точках А, А1(это внешние) и С1 (это - внутренняя, как бы ниже линии центров), а другой (которая справа) - в точках В, В1(внешние) и С (внутренняя, выше линии центров). Точка К1 лежит ниже линии центров (и "слева"), и К1А1 = К1С1; точка К лежит выше линии центров (и "справа"), КВ = КС.
В тр-ке ABC: AC=CB=10см, угол а=30 градусов, BK- перпендикуляр у плоскости треугольника и равен 5 см найти расстояние от K до AC
рассмотрим образованную пирамиду АВСК, КВ перпендикулярно АВС, значит нам необходимо найти длину высоты, опущенной в грани АСК из вершины К на АС, По теореме о трех перпендикулярах ее проекция на плоскость АВС будет перпендикулярна АС. Обозначим точку пересечения высоты с АС через Н. Тогда нужно найти КН.
рассмотрим основание пирамиды - треугольник АВС, Он равнобедренный ас=ВС=10 с углом у основания А=30 градусов. Опустим высоту из вершины треугольника С на АВ - СМ. Высота, опущенная из точки С, будет и биссектрисой, и медианой треугольника. То есть АМ=МВ. Треугольник АСМ - прямоугольный, с одним из осмтрых углов = 30 градусов, значит катет, лежащий против этого угла, равен половине гипотенузы: АМ=1/2*АС, АМ=1/2*10=5 (см). По теореме Пифагора найдем второй катет СМ:
CM=sqrt(AC2-AM2)
CM=sqrt(100-25)=sqrt75=5sqrt3
BH- проекция КН на плоскость основания АВС, и, как было уже отмечено, ВН перпендикулярна АС. Рассм отрим треугольники АНВ и АМС- они подобны:
АН/АМ=НВ/МС=АВ/АС
НВ/МС=АВ/АС
НВ=МС*АВ/АС
НВ=5*(2*5sqrt3)/10=5sqrt3
Треугольник КНВ - прямоугольный (КВ перпендикулярно плоскости АВС). По теореме Пифагора найдем КН:
KH2=KB2+HB2
KH=sqrt(25+75)=sqrt100=10 (см)
Обозначения. Для внешних касательных точки касания А и В ("сверху"), А1 и В1 ("снизу"), внутренняя касательная пересекает внешние в точках К (c прямой АВ) и K1 (с прямой А1В1). С - "верхняя" точка касания внутренней касательной, С1 - "нижняя".
Получается вот что - одной окружности (ну, пусть слева на чертеже) касательные касаются в точках А, А1(это внешние) и С1 (это - внутренняя, как бы ниже линии центров), а другой (которая справа) - в точках В, В1(внешние) и С (внутренняя, выше линии центров). Точка К1 лежит ниже линии центров (и "слева"), и К1А1 = К1С1; точка К лежит выше линии центров (и "справа"), КВ = КС.
СС1 = КС1 - КС = КА - КС = АВ - КВ - КС = АВ - 2*КС.
СС1 = К1С - К1С1 = К1В1 - К1С1 = А1В1 - К1С1 - А1К1 = А1В1 - 2*К1С1;
Но АВ = А1В1, поэтому К1С1 = КС;
АВ = КС1 + КВ = КК1 - К1С1 + КС = КК1, ч.т.д.