1. Докажите, что в равнобедренном треугольнике углы при основании равны.
пусть АВС- равнобедренный, АВ -основание. докажем, что угА=угВ
тр-к САВ=тр-кСВА по первому признаку равенства треугольников., действительно СА=СВ, СВ=СА, угС=угС. из равенства треугольников следует, что угА=угВ
2. Докажите, что если в треугольнике два угла равны, то он равнобедренный.
пустьАВС-треугольник угА=угВ АВ-основание. тр-кАВС=тр-кВАС по второму признаку равенства. действительно АВ=ВА угВ=угА, угА=угВ, из равенства следует АС=ВС
3. Объясните, что такое обратная теорема.
Обратная теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны.
" в равнобедренном треугольнике углы при основании равны" - прямая Т
" если в треугольнике два угла равны, то он равнобедренный" - обратная Т.
не для всякой Т есть обратная.
4. Докажите, что в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
пусть АВС- равнобедренный, СД- медиана к основанию.
так как АС=ВС и угСАД= угСВД по Т углы при основании равны , то трСАД=трСВД и АД=ВД по условию. из равенства треугольников следует равенство углов уг АСД=угВСД., угАДС=угВДС. Т.к. угАДС=ВДС, тоСД - биссектриса. Т.к. угАДС=ВДС и смежные, то СД - высота
AD - это высота треугольника ABC, AB и AC - это катеты треугольника, а BC - гипотенуза. Высота AD делит гипотенузу BC на две части. Чтобы найти катет AC, нужно найти гипотенузу BC. Рассмотрим прямоугольный треугольник ADB. По теореме Пифагора BD^2 = AB^2 - AD^2 = 20^2 - 12^2 = 400 - 144 = 256, следовательно, BD = 16 (т.е. корень квадратный из 256). BC = BD + DC = 16 + DC. По теореме Пифагора AC^2 = AD^2 + DC^2 = 12^2 +DC^2 = 144 + DC^2. Рассмотрим прямоугольный треугольник CAB. По теореме Пифагора AC^2 = BC^2 - AB^2 = BC^2 - 20^2 = BC^2 - 400 = (16+DC)^2 -400 = 256 + 32 DC + DC^2 -400 = DC^2 + 32 DC - 144. Получаем, что AC^2 = 144 + DC^2 и AC^2 = DC^2 + 32 DC - 144. Приравняем правые части этих равенств, получим, 144 + DC^2 = DC^2 + 32 DC - 144. Откуда получаем 32 DC = 288, следовательно, DC = 9. Т. к. BC = BD + DC, то BC = 16 + 9 = 25. Тогда по теореме Пифагора AC^2 = BC^2 - AB^2 = 25^2 - 20^2 = 625 - 400 = 225, значит, AC = 15.
Теперь найдём косинус угла С. По определению, cosC=AC/BC=15/25=3/5
1. Докажите, что в равнобедренном треугольнике углы при основании равны.
пусть АВС- равнобедренный, АВ -основание. докажем, что угА=угВ
тр-к САВ=тр-кСВА по первому признаку равенства треугольников., действительно СА=СВ, СВ=СА, угС=угС. из равенства треугольников следует, что угА=угВ
2. Докажите, что если в треугольнике два угла равны, то он равнобедренный.
пустьАВС-треугольник угА=угВ АВ-основание. тр-кАВС=тр-кВАС по второму признаку равенства. действительно АВ=ВА угВ=угА, угА=угВ, из равенства следует АС=ВС
3. Объясните, что такое обратная теорема.
Обратная теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны.
" в равнобедренном треугольнике углы при основании равны" - прямая Т
" если в треугольнике два угла равны, то он равнобедренный" - обратная Т.
не для всякой Т есть обратная.
4. Докажите, что в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
пусть АВС- равнобедренный, СД- медиана к основанию.
так как АС=ВС и угСАД= угСВД по Т углы при основании равны , то трСАД=трСВД и АД=ВД по условию. из равенства треугольников следует равенство углов уг АСД=угВСД., угАДС=угВДС. Т.к. угАДС=ВДС, тоСД - биссектриса. Т.к. угАДС=ВДС и смежные, то СД - высота
AD - это высота треугольника ABC, AB и AC - это катеты треугольника, а BC - гипотенуза. Высота AD делит гипотенузу BC на две части. Чтобы найти катет AC, нужно найти гипотенузу BC. Рассмотрим прямоугольный треугольник ADB. По теореме Пифагора BD^2 = AB^2 - AD^2 = 20^2 - 12^2 = 400 - 144 = 256, следовательно, BD = 16 (т.е. корень квадратный из 256). BC = BD + DC = 16 + DC. По теореме Пифагора AC^2 = AD^2 + DC^2 = 12^2 +DC^2 = 144 + DC^2. Рассмотрим прямоугольный треугольник CAB. По теореме Пифагора AC^2 = BC^2 - AB^2 = BC^2 - 20^2 = BC^2 - 400 = (16+DC)^2 -400 = 256 + 32 DC + DC^2 -400 = DC^2 + 32 DC - 144. Получаем, что AC^2 = 144 + DC^2 и AC^2 = DC^2 + 32 DC - 144. Приравняем правые части этих равенств, получим, 144 + DC^2 = DC^2 + 32 DC - 144. Откуда получаем 32 DC = 288, следовательно, DC = 9. Т. к. BC = BD + DC, то BC = 16 + 9 = 25. Тогда по теореме Пифагора AC^2 = BC^2 - AB^2 = 25^2 - 20^2 = 625 - 400 = 225, значит, AC = 15.
Теперь найдём косинус угла С. По определению, cosC=AC/BC=15/25=3/5
ответ:cosC=AC/BC=15, AC = 15
значек^ это в квадрате