10) Здесь можем провести прямую через точки N и P, лежащие в одной плоскости (A1B1C1). Ее след — NP (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.
Продолжим прямую NP. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и P. Еще две прямые этой плоскости — C1D1 и A1D1 . Точка пересечения A1D1 и NP — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( DCC1), а значит, через нее и точку M, лежащую в этой же плоскости, можно провести прямую. Прямая MS пересекает ребро DD1 в точке E. ME — ее след (видимый). Через точки P и E, лежащие в одной плоскости (DCC1), можно провести прямую, след которой — PE (видимый). В плоскости (DCC1) есть прямая PE, в параллельной ей плоскости (ABB1) — точка M. Через точку M можем провести прямую ML, параллельную PE. Она пересекает ребро BB1 в точке L. ML — след этой прямой (невидимый). Точки N и L лежат в одной плоскости (BCC1), значит, через них можно провести прямую. Ее след — NL (невидимый). Пятиугольник MLNPE — искомое сечение.
3) Здесь точки M и N лежат в одной плоскости ABS, соединяем их, получившийся след MN (видимый). Точки M и P лежат в одной плоскости APS, соединяем их, получаем прямую, след которой MP (невидимый). Точки N и P лежат в одной плоскости ABP, соединяем их, получаем прямую, след которой NP (невидимый). Треугольник NPM - искомое сечение.
Найдем угол ВАС: 180- (30+45) = 180 - 75 = 105 градусов Можно провести высоту к стороне ВС, тогда высота AD будет перпендикулярна стороне BC и угол BAD = 180 - (90+45) = 180 - 135 = 45 градусов. Следует, что BD=AD . Пусть сторона - х, тогда BD=AD=x x^2 + x^2 = 16 (по теореме Пифагора: квадрат гипотенузы, т.е. AB, равен сумме длин квадратов катетов, т.е. AD и BD) 2х^2 = 16, x^2 = 8, x= 2 корня из 2
По теореме длины стороны треугольника напротив угла в 30 градусов: AC=2AD= 2* 2 корня из 2 = 4 корня из 2 ответ: 4 корня из 2
Объяснение:
10) Здесь можем провести прямую через точки N и P, лежащие в одной плоскости (A1B1C1). Ее след — NP (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.
Продолжим прямую NP. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и P. Еще две прямые этой плоскости — C1D1 и A1D1 . Точка пересечения A1D1 и NP — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости ( DCC1), а значит, через нее и точку M, лежащую в этой же плоскости, можно провести прямую. Прямая MS пересекает ребро DD1 в точке E. ME — ее след (видимый). Через точки P и E, лежащие в одной плоскости (DCC1), можно провести прямую, след которой — PE (видимый). В плоскости (DCC1) есть прямая PE, в параллельной ей плоскости (ABB1) — точка M. Через точку M можем провести прямую ML, параллельную PE. Она пересекает ребро BB1 в точке L. ML — след этой прямой (невидимый). Точки N и L лежат в одной плоскости (BCC1), значит, через них можно провести прямую. Ее след — NL (невидимый). Пятиугольник MLNPE — искомое сечение.
3) Здесь точки M и N лежат в одной плоскости ABS, соединяем их, получившийся след MN (видимый). Точки M и P лежат в одной плоскости APS, соединяем их, получаем прямую, след которой MP (невидимый). Точки N и P лежат в одной плоскости ABP, соединяем их, получаем прямую, след которой NP (невидимый). Треугольник NPM - искомое сечение.
Всё просто))) Надеюсь понятно объяснил
Можно провести высоту к стороне ВС, тогда высота AD будет перпендикулярна стороне BC и угол BAD = 180 - (90+45) = 180 - 135 = 45 градусов. Следует, что BD=AD . Пусть сторона - х, тогда BD=AD=x
x^2 + x^2 = 16 (по теореме Пифагора: квадрат гипотенузы, т.е. AB, равен сумме длин квадратов катетов, т.е. AD и BD)
2х^2 = 16,
x^2 = 8,
x= 2 корня из 2
По теореме длины стороны треугольника напротив угла в 30 градусов: AC=2AD= 2* 2 корня из 2 = 4 корня из 2
ответ: 4 корня из 2