Построить окружность с центром в одном конце отрезка.
Построить окружность такого же радиуса в другом конце отрезка. Провести прямую через точки пересечения окружностей.
Проведенная прямая и будет серединным перпендикуляром.
2)
Шаг 1. Проводим окружность с произвольным радиусом r с центром в точке O. Окружность пересекает прямую в точках A и B.
Шаг 2. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей.
Обращаю ваше внимание на то что точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.
Шаг 3. Искомая прямая проходит через точки С и О.
Доказательство.
Проведем отрезки AC и CB. Δ ACO = Δ BCO по третьему признаку равенства треугольников (AO = OB, AC = CB, по построению, CO – общая). ∠ COA = ∠ COB = 90 °. Прямая CO ⊥ AB.
Как было уже сказано выше все четыре угла образованных при пересечении двух прямых перпендикулярны если хотя бы один из них перпендикулярен, т.е. является прямым и равен 90 градусов.
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.
1)
Сначала построй отрезок AB.
Построить окружность с центром в одном конце отрезка.
Построить окружность такого же радиуса в другом конце отрезка. Провести прямую через точки пересечения окружностей.
Проведенная прямая и будет серединным перпендикуляром.
2)
Шаг 1. Проводим окружность с произвольным радиусом r с центром в точке O. Окружность пересекает прямую в точках A и B.
Шаг 2. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей.
Обращаю ваше внимание на то что точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.
Шаг 3. Искомая прямая проходит через точки С и О.
Доказательство.
Проведем отрезки AC и CB. Δ ACO = Δ BCO по третьему признаку равенства треугольников (AO = OB, AC = CB, по построению, CO – общая). ∠ COA = ∠ COB = 90 °. Прямая CO ⊥ AB.
Как было уже сказано выше все четыре угла образованных при пересечении двух прямых перпендикулярны если хотя бы один из них перпендикулярен, т.е. является прямым и равен 90 градусов.
1. . Они могут пересекаться,касаться и не пересекаться.
) Прямая, имеющая одну общую точку с окружностью и лежащая с ней в одной плоскости, называется касательной к окружности.
б) Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется пересекающей к окружности.
3. Если расстояние от центра окружности до прямой больше радиуса, то у прямой и окружности не пересекаются друг с другом.
4. Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность касаются друг друга.
5. Если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность пересекаются друг с другом.