Пусть дано ΔАВС i ΔА 1 В 1 С 1 причем АС = А 1 С 1 , ВМ i B 1 M 1 - медианы, ВМ = B 1 M 1 , ∟BMC = ∟B 1 M 1 C 1 .
Докажем, что ΔАВС = Δ А 1 В 1 С 1 .
Рассмотрим ΔВМС i ΔB 1 M 1 C 1 .
1) ВМ = B 1 M 1 (по условию)
2) ∟BMC = ∟В 1 М 1 С 1 (по условию)
3) МС = М 1 С 1 (половины равных стopiн AC i A 1 С 1 ).
Итак, ΔВМС = ΔВ1М1С1 за I признаку.
Рассмотрим ΔАВС i Δ А 1 В 1 С 1 .
1) AC = А 1 С 1 (по условию)
2) ∟C = ∟C 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 )
3) ВС = В 1 С 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 ).
Итак, ΔАВС = ΔА 1 В 1 С 1 , за I признаку.
Это вписанные углы. Соответствующие центральные углы, опирающиеся на те же дуги, в 2 раза больше. Значит,
∠КОР = 2∠М = 104°,
∠МОР = 2∠К = 144°
∠МОК = 2∠Р = 112°
ОМ, ОР, ОК перпендикулярны сторонам треугольника АВС как радиусы, проведенные в точки касания.
В четырехугольнике АМОР:
∠АМО = ∠АРО = 90°, значит, ∠МАР = 180° - ∠МОР = 180° - 144° = 36°
(сумма углов четырехугольника равна 360°)
Аналогично,
∠МВК = 180° - ∠МОК = 180° - 112° = 68°
∠КСР = 180° - ∠КОР = 180° - 104° = 76°
Углы ΔАВС:
∠А =36°
∠В = 68
∠С = 76°
Пусть дано ΔАВС i ΔА 1 В 1 С 1 причем АС = А 1 С 1 , ВМ i B 1 M 1 - медианы, ВМ = B 1 M 1 , ∟BMC = ∟B 1 M 1 C 1 .
Докажем, что ΔАВС = Δ А 1 В 1 С 1 .
Рассмотрим ΔВМС i ΔB 1 M 1 C 1 .
1) ВМ = B 1 M 1 (по условию)
2) ∟BMC = ∟В 1 М 1 С 1 (по условию)
3) МС = М 1 С 1 (половины равных стopiн AC i A 1 С 1 ).
Итак, ΔВМС = ΔВ1М1С1 за I признаку.
Рассмотрим ΔАВС i Δ А 1 В 1 С 1 .
1) AC = А 1 С 1 (по условию)
2) ∟C = ∟C 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 )
3) ВС = В 1 С 1 (т. К. ΔВМС = Δ B 1 M 1 C 1 ).
Итак, ΔАВС = ΔА 1 В 1 С 1 , за I признаку.