А) В треугольнике BCD отрезок МК - средняя линия, т.к. соединяет середины сторон. Значит MKIIBD, MK=1/2BD, отсюда BD=2*MK=2√5 см <DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD: cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит <BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3 В прямоугольном треугольнике ВСЕ видим, что <BCE=180-<CEB-<CBE=180-90-45=45°, значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит DE/BE=3/1 Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна: BD/4=2√5/4=√5/2 см Значит ВЕ=1 часть=√5/2 см
BD=2*MK=2√5 см
<DBC=<BDA как накрест лежащие углы при пересечении двух параллельных прямых ВС и AD секущей BD. В прямоугольном треугольнике ADB находим косинус угла BDA, зная катет BD и гипотенузу AD:
cos BDA= BD/AD=2√5/2√10=1/√2=√2/2. Значит
<BDA=<DBC=45°
б) Рассмотрим прямоугольный треугольник CDE. Здесь tg ECD=DE/CE, отсюда DE=tg ECD*CE=3CE и СЕ=DE/3
В прямоугольном треугольнике ВСЕ видим, что
<BCE=180-<CEB-<CBE=180-90-45=45°,
значит треугольник ВСЕ - равнобедренный, т.к. углы при его основании ВС равны
ВЕ=СЕ, но СЕ=DE/3, значит ВЕ=DE/3. Значит
DE/BE=3/1
Таким образом, отрезок BD состоит из 4 частей, каждая из которых равна:
BD/4=2√5/4=√5/2 см
Значит ВЕ=1 часть=√5/2 см
Дано:
прямоугольный треугольник АВС.
Высота из прямого угла ВН
НС=АН+11
ВС/АВ=6/5
1. Обозначим отрезок АН за х, тогда НС=х+11
По теореме Пифагора ВС²+АВ²=АС²
Выразим длины катетов через а:
ВС=6*а, АВ=5*а
(6а)² + (5а)² = (2х+11)²
61а²=(2х+11)²
2. Выразим высоту h через треугольник АВН: h²=25a²-x²
и подставим полученное значение в треугольник ВНС:
h²+(x+11)²=36a²
25a²-x² + (x²+22x+121)=36a²
сокращаем выражение и получаем: а²=2х+11
3. Подставляем выражение, полученное во втором действии в выражение, полученное в первом действии:
61(2х+11)=(2х+11)²
61=2х+11
Заметим, что 2х+11=с - гипотенуза треугольника АВС.
ответ: с=61 см.