По катету и гипотинузе: Чертим произвольную прямую. Выбираем точку ( на рисунке она обозначена как точка 1, обозначать ее не надо, я отметила для пояснения) и произвольным раствором циркуля проводим из нее как из центра полуокружность. Тем же раствором циркуля из точки2, которая от 1 находится на расстоянии меньшем, чем 2 радиуса циркуля, -иначе окружности не пересекутся- чертим вторую полуокружность ( на рисунке обе они -синего цвета). По обе стороны прямой эти полуокружности пересеклись. Через эти точки пересечения полуокружностей проведем прямую.Она - перпендикулярна первой прямой. В точке пересечения этого перпендикуляря и прямой ставим букву С. Это - вершина прямого угланужного нам треугольника. На первой прямой ( горизонатальной) откладываем длину известного катета. Ставим точку А. ( или В, если больше нравится). Это - вторая вершинапрямоугольного треугольника. Из точки А раствором циркуля, радиусом, равным данной по условию длине гипотенузы, чертим полуокружность до пересечения с возведенным перпендикуляром ( на рисунке она красного цвета). Это пересечение - вершина острого угла В треугольника, его третья вершина. Имеем треугольник, в котором катет СА начерчен данной в условии длины, гипотенуза АВ - данной в условии длины. А второй катет СВ получился по построению.
ответ: АВ=3/2
АВ перпендикулярна плоскости альфа
АС, АВ - наклонная
Угол АСВ=30°
Угол АДВ=60°
Радиус окружности=√3
Найти: АВ
Т.к. АВ перпендикулярна плоскости альфа, то В проекция точки А на плоскости альфа, ВС и ВД - проекция АС и АД
На плоскости альфа, соответственно ВС принадлежит плоскости альфа
ВД принадлежит плоскости альфа, т.к. АВ перпендикулярна плоскости альфа,то ВС перпендикулярна плоскости альфа, ВД перпендикулярна плоскости альфа, значит АВ перпендикулярна ВС, АВ перпендикулярна ВД, и треугольники АВС и АВД - прямоугольные
Треугольник АВС:АВ/АС=sin угла АСВ
АС=АВ/sin угла АСВ=АВ/sin30°=АВ/1/2=2АВ
Треугольник АВД=АВ/АД=sin угла АДВ
АД=АВ/sin угла АДВ=АВ sin60°=AB/√3/2=2/√3AB
Треугольник АСД - прямоугольный (угол АСВ+угол АДВ=90°)
Значит: R=1/2СД, тогда CД=2*√3=2√3
По теореме Пифагора:
Треугольник АСД=АС²+АД²=СД²
2АВ²+2/√3АВ²=2√3²
4АВ²+4/3АВ²=12
16/3АВ²=12 |:3/16
АВ²=9/4
АВ=3/2
ответ: АВ=3/2