Окружность делится на три части: дуга АВ, дуга АС и дуга ВС. Причем на дугу ВС опирается вписанный угол А=50° (дано), равный половине градусной меры дуги, на которую он опирается. То есть дуга ВС=100° и центральный угол ВОС, опирающийся на дугу ВС, равен градусной мере этой дуги. <BOC=100°. Это в любом случае. Вся окружность = 360°, дуга ВС=100°, значит остается 260°, которые делятся в отношении 3:2 или 3х:2х, откуда х=52°. Тогда дуга АВ=3*52=156°, а дуга АС=2*52=104°. Вписанные углы <B=52°, <C=78°. ответ: <B=52°, <C=78°. <BOC=100°.
Так как в условии четко не обозначено расположение точек, то рассмотрим второй вариант: Дуга АВ содержит и дугу АС, то есть на дугу ВС остается х=100°. Тогда дуга АС=200°, дуга СВ=100°, дуга ВА=60°. Соответственно, ответ: <B=100°, <C=30. <BOA=100°
1) ch3-сh2-> ch3-ch=ch2+ h2 (условия: t, ni)2) ch3-ch=ch2+ > ch3-ch-ch3
|
cl3) ch3-ch-ch3+ koh(> ch3-ch-ch3+ kcl
| |
cl oh
4) 2 ch3-ch-> ch3-ch--o--ch--ch3+ 2h2o (условия: t< 140, h2so4)
| | |
oh ch3 ch3
5) ch3-ch--o--ch--ch3 + > ch3-ch-ch3+ ch3-ch-ch3
| | | |
ch3 ch3 oh i
Причем на дугу ВС опирается вписанный угол А=50° (дано), равный половине градусной меры дуги, на которую он опирается.
То есть дуга ВС=100° и центральный угол ВОС, опирающийся на дугу ВС, равен градусной мере этой дуги.
<BOC=100°. Это в любом случае.
Вся окружность = 360°, дуга ВС=100°, значит остается 260°, которые делятся в отношении 3:2 или 3х:2х, откуда х=52°.
Тогда дуга АВ=3*52=156°, а дуга АС=2*52=104°.
Вписанные углы <B=52°, <C=78°.
ответ: <B=52°, <C=78°. <BOC=100°.
Так как в условии четко не обозначено расположение точек, то рассмотрим второй вариант:
Дуга АВ содержит и дугу АС, то есть на дугу ВС остается х=100°.
Тогда дуга АС=200°, дуга СВ=100°, дуга ВА=60°.
Соответственно,
ответ: <B=100°, <C=30. <BOA=100°