Прямая а пересекает окружность в точках А (-7; 7) и В (-1; -1) и проходит через ее центр. Найдите: а) координаты центра окружности; б) длину радиуса окружности; в) запишите уравнения окружности и прямой а.
это радиус легко найти он равен высоте равен диаметр вписанного круга. Из точки пересечения диагоналей. диагонали делет на четыре равных прямоугольных треугольника раз один угол 60°то другой 120 ° диагонали ромба является биссектрисами его внутренных углов. Поэтому диагонали делят ромб на треугольники с углами 90° 60° 30° против угла в 30° лежит катет равным половине стороны ромба которая в этом треугольника является гипотенузой .
Поэтому катет равен 5 см . Высоту треугольника проведенную к стороне ромба ищем из треугольника с гипотенузы 5 см и противолежащим углом в 60°против гипотенузы лежит прямой угол равна 5 sin 60°
5× 3/2 площадь круга равна 25×3/4=75 п/4=18/75 /см/
Площадь круга равна πr², r - это радиус вписанного круга.
Этот радиус легко найти, он равен высоте, проведенной к стороне ромба из точки пересечения диагоналей . Диагонали делят ромб на 4 равных прямоугольных треугольника. Раз один угол в ромбе 60°, то другой 120°, диагонали ромба являются биссектрисами его внутренних углов. Поэтому диагонали делят ромб на треугольники с углами 90°; 60°; 30°. Против угла в 30° лежит катет, равный половине стороны ромба, которая в этом треугольнике является гипотенузой. Поэтому катет равен 5 см. Высоту треугольника ,проведенную к стороне ромба, ищем из треугольника с гипотенузой 5 см, и противолежащим углом в 60Град., т.е. она равна 5sin60град. =
5*√3/2, Площадь круга равна π *25*3/4=75π/4=18,75π/см²/
это радиус легко найти он равен высоте равен диаметр вписанного круга. Из точки пересечения диагоналей. диагонали делет на четыре равных прямоугольных треугольника раз один угол 60°то другой 120 ° диагонали ромба является биссектрисами его внутренных углов. Поэтому диагонали делят ромб на треугольники с углами 90° 60° 30° против угла в 30° лежит катет равным половине стороны ромба которая в этом треугольника является гипотенузой .
Поэтому катет равен 5 см . Высоту треугольника проведенную к стороне ромба ищем из треугольника с гипотенузы 5 см и противолежащим углом в 60°против гипотенузы лежит прямой угол равна 5 sin 60°
5× 3/2 площадь круга равна 25×3/4=75 п/4=18/75 /см/
По моему всё
Площадь круга равна πr², r - это радиус вписанного круга.
Этот радиус легко найти, он равен высоте, проведенной к стороне ромба из точки пересечения диагоналей . Диагонали делят ромб на 4 равных прямоугольных треугольника. Раз один угол в ромбе 60°, то другой 120°, диагонали ромба являются биссектрисами его внутренних углов. Поэтому диагонали делят ромб на треугольники с углами 90°; 60°; 30°. Против угла в 30° лежит катет, равный половине стороны ромба, которая в этом треугольнике является гипотенузой. Поэтому катет равен 5 см. Высоту треугольника ,проведенную к стороне ромба, ищем из треугольника с гипотенузой 5 см, и противолежащим углом в 60Град., т.е. она равна 5sin60град. =
5*√3/2, Площадь круга равна π *25*3/4=75π/4=18,75π/см²/
ответ 18,75π см²