В равностороннем треугольнике высота является и медианной и биссектрисой. Медианна опускаясь на основание делит сторону пополам. А высота образует прямой угл, и у нас получается прямоугольный треугольник. Получатся так, что мы можем найти высоту по теореме Пифагора. Ведь мы знаем все стороны прямоугольного треугольника, который получился. Сторона с=12корень3, а сторона а=6корень3(мы поделили по полам сторону, тк. медианна делит сторону на две равны части.) Значит ищем по теореме Пифагора b2- это b в квадрате. b2=c2-a2 Дальше проще прикрепить файл.
Касательные к окружности в точках А и В пересекаются в точке Р. <APB=22°. Отрезок ОА перпендикулярен АР, ОВ перпендикулярен ВР (радиусы окружности в точку касания). Прямоугольные треугольники АОР и ВОР равны, так как гипотенуза у них общая, а катеты АР и ВР равны как касательные к окружности из одной точки. Следовательно, <ОPА=<ОPВ=(1/2)*<APB=11°. Треугольник АРВ - равнобедренный, так как АР=ВР, <ОPА=<ОPВ. Следовательно, РМ - ,биссектриса, высота и медиана. Тогда <MBO=<OPB, как углы с взаимно перпендикулярными сторонами (сторона ВМ перпендикулярна ОР, ВО перпендикулярна ВР). Но <MBO=<ABO ( это тот же самый угол). ответ: <ABO=11°
b2- это b в квадрате.
b2=c2-a2
Дальше проще прикрепить файл.
Отрезок ОА перпендикулярен АР, ОВ перпендикулярен ВР (радиусы окружности в точку касания). Прямоугольные треугольники АОР и ВОР равны, так как гипотенуза у них общая, а катеты АР и ВР равны как касательные к окружности из одной точки.
Следовательно, <ОPА=<ОPВ=(1/2)*<APB=11°.
Треугольник АРВ - равнобедренный, так как АР=ВР, <ОPА=<ОPВ. Следовательно, РМ - ,биссектриса, высота и медиана.
Тогда <MBO=<OPB, как углы с взаимно перпендикулярными сторонами (сторона ВМ перпендикулярна ОР, ВО перпендикулярна ВР).
Но <MBO=<ABO ( это тот же самый угол).
ответ: <ABO=11°