Повернем квадрат ABCD относительно точки A на 90° так, чтобы точка B перешла в точку D. При этом повороте точка M переходит в точку Mў, а точка K - в точку Kў. Ясно, что РBMA = РDMўA. Так как РMAK = РMAB = РMўAD, то РMAD = РMўAK. Поэтому РMўAK = РMAD = РBMA = РDMўA, а значит, AK = KMў = KD + DMў = KD + BM.
18.2.
При повороте на 90° относительно точки P прямые PA1, PB1, PM1 и CH переходят в прямые, параллельные CA, CB, CM и AB соответственно. Следовательно, при таком повороте треугольника PA1B1 отрезок PM1 переходит в медиану (повернутого) треугольника.
18.3.
Рассмотрим поворот на 90° относительно точки B, переводящий вершину K в вершину N, а вершину C - в A. При этом повороте точка A переходит в некоторую точку Aў точка E - в Eў. Так как Eў и B - середины сторон AўN и AўC треугольника AўNC, то BEў||NC. Но РEBEў = 90°, поэтому BE^NC.
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
Объяснение:
Повернем квадрат ABCD относительно точки A на 90° так, чтобы точка B перешла в точку D. При этом повороте точка M переходит в точку Mў, а точка K - в точку Kў. Ясно, что РBMA = РDMўA. Так как РMAK = РMAB = РMўAD, то РMAD = РMўAK. Поэтому РMўAK = РMAD = РBMA = РDMўA, а значит, AK = KMў = KD + DMў = KD + BM.
18.2.
При повороте на 90° относительно точки P прямые PA1, PB1, PM1 и CH переходят в прямые, параллельные CA, CB, CM и AB соответственно. Следовательно, при таком повороте треугольника PA1B1 отрезок PM1 переходит в медиану (повернутого) треугольника.
18.3.
Рассмотрим поворот на 90° относительно точки B, переводящий вершину K в вершину N, а вершину C - в A. При этом повороте точка A переходит в некоторую точку Aў точка E - в Eў. Так как Eў и B - середины сторон AўN и AўC треугольника AўNC, то BEў||NC. Но РEBEў = 90°, поэтому BE^NC.
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка