Дано: ABCD - прямоугольник, AB=DC= 12 см, BC=AD=16 см, AC и BD - диагонали ABCD, AC∩BD = т.О, K ∉ ABCD, OK⊥ABCD, КО=5√5 см.
Найти: АК.
Решение.
Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности => точка О - центр описанной около прямоугольника ABCD окружности.
Длины отрезков AO, OC, BO, OD равны между собой и равны радиусу описанной окружности.
AO=OC=BO=OD.
Если проекции наклонных, проведённых из одной точки, равны, то равны и наклонные. Соответственно, ВК=КС=КD=KA (поскольку проекции данных наклонных (ВО, СО, DO и AO) равны между собой).
Найдём диагональ прямоугольника ABCD.
В прямоугольном ΔBAD (∠BAD=90°) по т. Пифагора:
BD²= AB²+AD²;
BD²= 12²+16²;
BD²= 400;
BD= 20 (-20 не подходит).
Диагонали прямоугольника равны, пересекаются и в точке пересечения делятся пополам => BO=OD=АО=ОD=½ BD= 20÷2=10 (см).
В прямоугольном ΔАОК (∠AOK=90°) по т. Пифагора:
АК²= АО²+ОК²;
АК²= 10²+(5√5)²;
AK²= 100+125;
AK²= 225;
AK= 15 (-15 не подходит).
Расстояние от т.К до вершин прямоугольника равно 15 см.
В любой трапеции треугольники, образованные отрезками диагоналей после пересечения и её основаниями, подобны .
Δ ВОС ≈ Δ АОD Коэффициент подобия дан в условии задачи: АD:ВС=7/3 Известно, что BC отстает (?) ( не совсем понятный термин) на 5 см от точки О до плоскости α. В подобных треугольниках подобны и их высоты.
Пусть ОН и оh - высоты этих треугольников. Здесь может быть 2 варианта. 1) вариант. ВС дальше от плоскости, чем точка О, на 5 см Если ОН=х, то оh=5 см АD:ВС=ОН:Оh= 7/3 ОН:Оh= 7/3 х:5= 7:3 3 х=35 ОН=11²/₃₅ см
2 вариант: Расстояние от ВС до О меньше расстояния от О до плоскости на 5 см. Если ОН=х оh= х - 5 см х:(х-5)=7:3 3х=7х-35 4х=35 х=8,75 ОН=8,75 см
Дано: ABCD - прямоугольник, AB=DC= 12 см, BC=AD=16 см, AC и BD - диагонали ABCD, AC∩BD = т.О, K ∉ ABCD, OK⊥ABCD, КО=5√5 см.
Найти: АК.
Решение.
Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности => точка О - центр описанной около прямоугольника ABCD окружности.
Длины отрезков AO, OC, BO, OD равны между собой и равны радиусу описанной окружности.
AO=OC=BO=OD.
Если проекции наклонных, проведённых из одной точки, равны, то равны и наклонные. Соответственно, ВК=КС=КD=KA (поскольку проекции данных наклонных (ВО, СО, DO и AO) равны между собой).
Найдём диагональ прямоугольника ABCD.
В прямоугольном ΔBAD (∠BAD=90°) по т. Пифагора:
BD²= AB²+AD²;
BD²= 12²+16²;
BD²= 400;
BD= 20 (-20 не подходит).
Диагонали прямоугольника равны, пересекаются и в точке пересечения делятся пополам => BO=OD=АО=ОD=½ BD= 20÷2=10 (см).
В прямоугольном ΔАОК (∠AOK=90°) по т. Пифагора:
АК²= АО²+ОК²;
АК²= 10²+(5√5)²;
AK²= 100+125;
AK²= 225;
AK= 15 (-15 не подходит).
Расстояние от т.К до вершин прямоугольника равно 15 см.
ОТВЕТ: 15 см.
P.S. Очень надеюсь, что все понятно расписала...)
Задача на подобие треугольников.
В любой трапеции треугольники, образованные отрезками диагоналей после пересечения и её основаниями, подобны .
Δ ВОС ≈ Δ АОD
Коэффициент подобия дан в условии задачи:
АD:ВС=7/3
Известно, что BC отстает (?) ( не совсем понятный термин) на 5 см от точки О до плоскости α.
В подобных треугольниках подобны и их высоты.
Пусть ОН и оh - высоты этих треугольников.
Здесь может быть 2 варианта.
1) вариант.
ВС дальше от плоскости, чем точка О, на 5 см
Если ОН=х, то оh=5 см
АD:ВС=ОН:Оh= 7/3
ОН:Оh= 7/3
х:5= 7:3
3 х=35
ОН=11²/₃₅ см
2 вариант:
Расстояние от ВС до О меньше расстояния от О до плоскости на 5 см.
Если ОН=х
оh= х - 5 см
х:(х-5)=7:3
3х=7х-35
4х=35
х=8,75
ОН=8,75 см