Прямая DB касается окружности с центром О и радиусом ОD=1,8 в точке D. Чему равна длина отрезка ОВ, если DOB=60°? 2. В окружности с центром О, диаметр АD проходит через середину хорды КМ. Найдите все внутренние углы KAS, если KAS на 12° больше SKA
ъясните. (1б) в) Как расположена по отношению к плоскости прямая , параллельная прямой 11? ответ обоснуйте. (1б) 6. Плоскость проходит через основание трапеции . Точки и – середины боковых сторон трапеции . а) Докажите, что прямая параллельна плоскости . (1б) б) Найдите , если = 4, = 6. (1б) 7. Параллелограммы и 11 не лежат в одной плоскости. Докажите параллельность плоскостей 1 и 1. ( 2б) 8. Дан тетраэдр . ∈ , ∈ , ∈ . а) Постройте точку пересечения с плоскостью . (1б) б) Постройте линию пересечения плоскости и плоскости . (1б) 9. Концы двух равных перпендикулярных отрезков и лежат на двух параллельных плоскостях. а) При каком дополнительном условии пересечения отрезков является квадратом? (2б) б) Докажите, что если не является квадратом, то - трапеция, в которой высота равна средней линии. (2б) 10. Дан куб 1111.Точка - середина ребра 11. Найдите косинус угла между прямыми и 1. (5б)
L, M - середины сторон.
Продлим LM до пересечения с AB в точке K
BL=LC (по условию)
∠KBL=∠C (накрест лежащие при AB||CD)
∠KLB=∠MLC (вертикальные)
△KBL=△MCL (по стороне и прилежащим углам) => KL=LM
△KAM: AL - биссектриса (по условию) и медиана, следовательно и высота, ∠ALM=90.
Продлим LM до пересечения с AD в точке N
Рассуждая аналогично, △MDN=△MCL => MN=LM =>
△NAL: AM - биссектриса/медиана, следовательно и высота, ∠AMN=90
Из точки A можно провести только один перпендикуляр к прямой LM. Следовательно данная конфигурация невозможна.
в) Как расположена по отношению к плоскости прямая , параллельная прямой
11? ответ обоснуйте. (1б)
6. Плоскость проходит через основание трапеции . Точки и – середины
боковых сторон трапеции .
а) Докажите, что прямая параллельна плоскости . (1б)
б) Найдите , если = 4, = 6. (1б)
7. Параллелограммы и 11 не лежат в одной плоскости. Докажите
параллельность плоскостей 1 и 1.
( 2б)
8. Дан тетраэдр . ∈ , ∈ , ∈ .
а) Постройте точку пересечения с плоскостью . (1б)
б) Постройте линию пересечения плоскости и плоскости . (1б)
9. Концы двух равных перпендикулярных отрезков и лежат на двух параллельных
плоскостях. а) При каком дополнительном условии пересечения
отрезков является квадратом? (2б) б)
Докажите, что если не является квадратом, то - трапеция, в которой высота
равна средней линии. (2б)
10. Дан куб 1111.Точка - середина ребра 11. Найдите косинус угла между
прямыми и 1. (5б)