Прямая fc перпендикулярна плоскости ромба abcd, bd=fc=20см. угол bad=60градусов. найдите расстояние от точки f до прямых, содержащих стороны ромба , решение, если можете рисунок, но постараюсь сама понять❤️
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Объяснение:
т.к ДВ перпендикулярно и АВ и ВС, то следовательно АВ и ВС параллельны.
получается что АС секущая при параллельных прямых.
Соответственно угол ЕАВ= углу ЕСД (как внутренние накрест лежащие)
Угол АЕВ= углу СЕВ как вертикальные углы
рассмотрим 2 треугольника АВЕ и СДЕ
они равны по 2 признаку равенства прямоугольных треугольников
(если катет и прилежащий острый угол одного треугольника равен катету и прилежащему углу второго треугольника)
Катеты ДЕ и ВЕ равны по условию
Прилежащие острые углы также АЕВ=СЕД равны.
А если равны треугольники, то и их все стороны так же попарно равны.
Катет АВ= соответствующему катету ДС