Прямая MN, параллельная основанию AC треугольника ABC, делит площадь этого треугольника на трапецию AMNC и треугольник MBN в соотношении 4:5. Найдите отношения BM:MA, BN:NC.
ABCD - выпуклый четырехугольник, в нем по условию ∠BAC=∠ACD, а это внутренние накрест лежащие при прямых СD и АВ, и секущей АС, значит, по признаку параллельности прямых СD и АВ параллельны. ВC=AD.
Четырехугольник окажется вписанным, если сумма противоположных углов равна 180°. Параллелограмм, который вписан в окружность, может быть только прямоугольником. /как частный случай прямоугольника - квадрат./
А если стороны АD и ВС не параллельны, то это будет равнобедренная трапеция.
Равнобедренной трапецией этот четырехугольник будет,
если добавить условия
1) AB≠CD; /верхнее и нижнее основания у трапеции различные./ и
6)BC не параллелен AD;/боковые стороны не параллельны/, 7) ∠BCA≠∠CAD; /при равенстве этих углов противолежащие углы равны, в сумме 180°, тогда трапеция не получим./
Если же добавить условие 8)∠ABC=90∘ то и угол С станет тоже прямым, поскольку ВС будет перпендикулярно к одной из двух параллельных прямых АВ, он окажется перпендикуляром и к СD, 3)AD>AB; значит, четырехугольник окажется прямоугольником. около него тоже можно описать окружность, центр ее - точка пересечения
диагоналей. если не учитывать 3)AD>AB, то можем допустить, что эти смежные стороны равны, тогда из прямоугольника получим квадрат.
наконец, окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. Но данных в условии не хватает для этого.
В объяснении.
Объяснение:
1. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+3х+4х = 360° => х = 36°.
Больший угол равен 4х = 144°.
2. Сумма внутренних углов выпуклого четырехугольника равна 360 градусов.
Пусть коэффициент пропорциональности равен х.
Тогда х+2х+2х+4х = 360° => х = 40°.
Меньший угол равен 4х = 40°.
3. Площадь квадрата равна площади прямоугольника: 4*9 = 36 =>
Сторона квадрата равна √36 = 6 ед.
4. Площадь прямоугольника равна х*(х+2) = 24. Тогда
х² + 2х - 24 = 0. Решаем квадратное уравнение. => x = 6. (второй корень отрицательный)
Тогда большая сторона равна 6 + 2 = 8 ед.
5. Смотри рисунок.
6. Уравнение окружности:
(Х - Хц)² + (Y-Yц)² = R² Тогда
а) Координаты центра: Ц(-5;2) Радиус = 4 ед.
б) Координаты центра: Ц(0;-3) Радиус = 3 ед.
ABCD - выпуклый четырехугольник, в нем по условию ∠BAC=∠ACD, а это внутренние накрест лежащие при прямых СD и АВ, и секущей АС, значит, по признаку параллельности прямых СD и АВ параллельны. ВC=AD.
Четырехугольник окажется вписанным, если сумма противоположных углов равна 180°. Параллелограмм, который вписан в окружность, может быть только прямоугольником. /как частный случай прямоугольника - квадрат./
А если стороны АD и ВС не параллельны, то это будет равнобедренная трапеция.
Равнобедренной трапецией этот четырехугольник будет,
если добавить условия
1) AB≠CD; /верхнее и нижнее основания у трапеции различные./ и
6)BC не параллелен AD;/боковые стороны не параллельны/, 7) ∠BCA≠∠CAD; /при равенстве этих углов противолежащие углы равны, в сумме 180°, тогда трапеция не получим./
Если же добавить условие 8)∠ABC=90∘ то и угол С станет тоже прямым, поскольку ВС будет перпендикулярно к одной из двух параллельных прямых АВ, он окажется перпендикуляром и к СD, 3)AD>AB; значит, четырехугольник окажется прямоугольником. около него тоже можно описать окружность, центр ее - точка пересечения
диагоналей. если не учитывать 3)AD>AB, то можем допустить, что эти смежные стороны равны, тогда из прямоугольника получим квадрат.
наконец, окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. Но данных в условии не хватает для этого.
ответ 1), 6), 7, или 8)