Прямая МN, пересекающая две стороны АВ и ВС треугольника АВС, параллельна третьей стороне АС. МN делит сторону АВ на части 15 и 21 см. и отсекает отрезок В N = 15 см. на стороне ВС. Найдите сторону АС треугольника АВС, если РАВС = 189 см.
Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника AOB если угол BCD равен 70 градусов
ответ или решение1
Петухова Виктория
Дано:
ромб ABCD,
АС и ВD — диагонали,
АС пересекается с ВD в точке О,
угол BCD = 70 градусов.
Найти градусные меры углов треугольника АОВ, то есть угол АОВ, угол ОВА, угол ВАО — ?
Рассмотрим ромб АВСD. По признаку диагонали ромба пересекаются под прямым углом. Тогда треугольник АОВ является прямоугольным. По свойству ромба, диагонали делят углы ромба пополам. Зная, что сумма градусных мер углов ромба равна 360 градусам. Получим:
угол В = углу D = 360 - (угол А + угол С) : 2 = 360 - (70 + 70) = 360 - 140 = 110 градусов.
3) Чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх;
Отмечаем начало координат - точку О (0; 0), подписываем оси : вправо - ось х , вверх - ось у
Отмечаем единичные отрезки по каждой оси в 1 клетку.
4) Отмечаем в системе координат вершину - точку (2; -1); нули функции - точки (1; 0) и (3; 0)
5) через вершину будущей параболы проводим пунктирную прямую, параллельную оси у - ось симметрии будущей параболы и вторую пунктирную прямую, параллельную оси х. В этой новой пунктирной системе координат строим параболу у=х², а именно добавляем пару точек для правильного продления вверх нашей параболы. В новой пунктирной системе координат ставим точки
х= 2 -2 3 -3
у= 4 4 9 9
Плавно соединяем все поставленные точки, подписываем график
Диагонали ромба ABCD пересекаются в точке О. Найдите углы треугольника AOB если угол BCD равен 70 градусов
ответ или решение1
Петухова Виктория
Дано:
ромб ABCD,
АС и ВD — диагонали,
АС пересекается с ВD в точке О,
угол BCD = 70 градусов.
Найти градусные меры углов треугольника АОВ, то есть угол АОВ, угол ОВА, угол ВАО — ?
Рассмотрим ромб АВСD. По признаку диагонали ромба пересекаются под прямым углом. Тогда треугольник АОВ является прямоугольным. По свойству ромба, диагонали делят углы ромба пополам. Зная, что сумма градусных мер углов ромба равна 360 градусам. Получим:
угол В = углу D = 360 - (угол А + угол С) : 2 = 360 - (70 + 70) = 360 - 140 = 110 градусов.
Тогда
угол АВО = 110 : 2 = 55 (градусов);
углу ВАО = 70 : 2 = 35 градусов.
ответ: 90 градусов; 55 градусов; 35 градусов.
Объяснение:
Вот
Объяснение:
у= х²-4х+3
график парабола
1) найдём координаты вершины В(х; у)
х(В) = -b/2a
x(B) = 4/2 = 2
y(B) = 4-8+3 = -1
B(2; -1) - вершина параболы
2) найдём нули функции
у = 0
х²-4х+3 = 0
Д= 16-12 = 4 = 2²
х(1) = (4-2)/2 = 1
х(2) = (4+2)/2 = 3
(1; 0) ; (3; 0) - нули функции
3) Чертим систему координат, отмечаем стрелками положительное направление: вправо и вверх;
Отмечаем начало координат - точку О (0; 0), подписываем оси : вправо - ось х , вверх - ось у
Отмечаем единичные отрезки по каждой оси в 1 клетку.
4) Отмечаем в системе координат вершину - точку (2; -1); нули функции - точки (1; 0) и (3; 0)
5) через вершину будущей параболы проводим пунктирную прямую, параллельную оси у - ось симметрии будущей параболы и вторую пунктирную прямую, параллельную оси х. В этой новой пунктирной системе координат строим параболу у=х², а именно добавляем пару точек для правильного продления вверх нашей параболы. В новой пунктирной системе координат ставим точки
х= 2 -2 3 -3
у= 4 4 9 9
Плавно соединяем все поставленные точки, подписываем график
у = х²-4х+3
Отвечаем на вопросы по графику
1)
у∈(-1; +∞) при х∈(-∞; +∞)
2)
у>0 при х∈(-∞; 1)U(3; +∞)
Подробнее - на -