Прямая, параллельная основаниям трапеции АВСD, пересекает её боковые стороны АВ CD в точках Е и Рсоответственно. Hайдите длину отрезка ЕР. если AD - 48, ВC-16. CP: DF - 5:3
Строим треуг АВС. Из точки В проводим перпендикуляр ВD. Соединяем AD и CD. Получили пирамиду, BD-перпендикуляр к основанию АВС. Грани ABD и CBD являются прямоугольными треуг-ми. У треуг. ABD и CBD катет DB-общий, катеты АВ=ВС по условию, значит треуг-ки ABD=CBD по двум катетам, тогда AD=CD, следовательно треуг. ADC равнобедренный. Найдем AD^2=АВ^2+DB^2=625+15=640DO-высота, проведенная к основанию АС, ана же и медиана и искомое расстояние от точки D до прямой АС.Так как DO медиана, то АО=48/2=24смDO=√(AD^2-AO^2)=√(640-576)=8смответ 8см
задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.
задание 2 Правило существует В прямоугольном треугольнике высота , проведенная из вершины прямого угла , разбивает его на два треугольника , подобных исходному.
задание 1 внешний угол треугольника равен сумме двух углов не смежных с ним, то А+В= 60 . Треугольник АВС равнобедренный и углы при основании равны, то есть А=В=30 проведем из угла С высот. СН. Тогда угол НСА равен 30 градусов, катет лежащий против угла 30 гр. равен половине гипотенузы. следовательно СН=1/2АС=1/2 * 37 = 18,5 см.