Площадь основания шарового сегмента S=πr². 64π=πr². Отсюда r=8 ( Радиус основания сегмента) Площадь сферической поверхности шарового сегмента S=2πRh, где R- радиус шара. 100π=2πRh, отсюда 2Rh=100. По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r². Отсюда h=√(100-64)=6. R=100/(2*6)=8и1/3. Вот теперь знаем и R, и h. Формула объема шарового сегмента V=πh²(R-(1/3)*h)). Подставляем известные значения и имеем: V =π*36*(8и1/3-2)=228π. ответ: V = 228π.
2.так как. АД-медина, то т. Д (х; у) -середина ВС Значит, х=(х1+х2)/2 у=(у1+у2)/2 В (х1;у1), С (х2;у2), Д (-2;-4) Соs(АД АС) =(вектор АД*на вектор АС) /|АД|*|АС| (дальше это векторы) АД (-2-0;-4-(-4)) АД (-2;0) АС (-1-0;-3-(-4)) АС (-1;1) АД*АС=-2*(-1)+0*1=2 |АД|=2;|АС|=корень из 2 Соs(АД АС) =2/(2*корень из 2)=корень из 2/2 Значит, угол равен 45 градусов. 1.Поместите A в начало координат, D на оси x, B - на оси y. Все координаты находятся элементарно. Дальше - находите вектора и перемножаете. Например, координаты точки B - (0,6)
64π=πr². Отсюда r=8 ( Радиус основания сегмента)
Площадь сферической поверхности шарового сегмента S=2πRh,
где R- радиус шара.
100π=2πRh, отсюда 2Rh=100.
По Пифагору R²=(R-h)²+r² или R²=R²-2Rh+h²+r². 2Rh-h²=r².
Отсюда h=√(100-64)=6.
R=100/(2*6)=8и1/3.
Вот теперь знаем и R, и h.
Формула объема шарового сегмента V=πh²(R-(1/3)*h)).
Подставляем известные значения и имеем:
V =π*36*(8и1/3-2)=228π.
ответ: V = 228π.
https://ru-static.z-dn.net/files/db3/f2bb8e148665d36051a6a0a5e42354f8.jpg
Значит, х=(х1+х2)/2
у=(у1+у2)/2
В (х1;у1), С (х2;у2), Д (-2;-4)
Соs(АД АС) =(вектор АД*на вектор АС) /|АД|*|АС|
(дальше это векторы)
АД (-2-0;-4-(-4))
АД (-2;0)
АС (-1-0;-3-(-4))
АС (-1;1)
АД*АС=-2*(-1)+0*1=2
|АД|=2;|АС|=корень из 2
Соs(АД АС) =2/(2*корень из 2)=корень из 2/2
Значит, угол равен 45 градусов.
1.Поместите A в начало координат, D на оси x, B - на оси y. Все координаты находятся элементарно. Дальше - находите вектора и перемножаете. Например, координаты точки B - (0,6)