Площадь ᐃ ВМС= площадь ᐃ АВС минус площадь ᐃ АМС Обозначим точку пересечения прямой, проведенной из центра окружности, со стороной АС - буквой Н.
Рассмотрим ⊿АМН Он равнобедренный прямоугольный, так как прямая ОН, проведенная из центра окружности к хорде (а сторона АС - хорда) и делящая ее пополам, перпендикулярна ей, и отсюда угол АМН = 45°.
АН=НС по построению.
МН=НС и ⊿ МНС - равнобедренный прямоугольный . Угол АМС=90°. Итак, имеем равнобедренный прямоугольный ⊿ АМС Обозначим АМ = МС = а. АВ=АС, и, как гипотенуза равнобедренного прямоугольного треугольника, равна а√2. СМ- высота ᐃ АВС из вершины С к стороне АВ. Запишем уравнение площади ᐃ АВС (а*а√2):2=9√2 а²√2=18√2 а²=18 см² а=3√2 см Теперь найдем площадь ⊿ АМС S ⊿ АМС=АМ*МС:2=а²:2 S ⊿ АМС=(3√2)²:2=9см² S ᐃ ВМС= 9√2-9=9(√2-1)см²
Площадь ᐃ ВМС= площадь ᐃ АВС минус площадь ᐃ АМС
Обозначим точку пересечения прямой, проведенной из центра окружности, со стороной АС - буквой Н.
Рассмотрим ⊿АМН
Он равнобедренный прямоугольный, так как прямая ОН, проведенная из центра окружности к хорде (а сторона АС - хорда) и делящая ее пополам, перпендикулярна ей, и отсюда угол АМН = 45°.
АН=НС по построению.
МН=НС и ⊿ МНС - равнобедренный прямоугольный .
Угол АМС=90°.
Итак, имеем равнобедренный прямоугольный ⊿ АМС
Обозначим АМ = МС = а.
АВ=АС, и, как гипотенуза равнобедренного прямоугольного треугольника, равна а√2.
СМ- высота ᐃ АВС из вершины С к стороне АВ.
Запишем уравнение площади ᐃ АВС
(а*а√2):2=9√2
а²√2=18√2
а²=18 см²
а=3√2 см
Теперь найдем площадь ⊿ АМС
S ⊿ АМС=АМ*МС:2=а²:2
S ⊿ АМС=(3√2)²:2=9см²
S ᐃ ВМС= 9√2-9=9(√2-1)см²
ответ:Номер 1
Диагонали прямоугольника в точке пересечения делятся пополам
Треугольник АОВ равнобедренный
<АВО=<ВАО=42 градуса
<ВОА=180-42•2=180-84=96 градусов
<АОD=(360-96•2):2=168:2=84 градуса
Номер 2
<1=<2=90 градусов
<3=35 градусов
<4=180-35=145 градусов
Номер 3
Одна сторона 2Х
Вторая 3Х
2Х•2+3Х•2=30
10Х=30
Х=30:10
Х=3
Одна сторона 3•2=6 см
Вторая 3•3=9 см
Номер 4
Углы при большом основании
<1=<2=106:2=53 градуса
Углы при меньшем основании
(360-53•2):2=127 градусов
<3=<4=127 градусов
Объяснение: