Прямая проходит через середину диагонали AC параллелограмма ABCD и пересекает стороны BC и AD в точках М и К соответственно. Докажите, что четырехугольник AMCK- параллелограмм
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
∠ALB = 120°.
Объяснение:
Дано: BL - медиана, BH⊥AC,BH - высота ,∠ACB = 60°, AC = 16, HC = 4
Найти: ∠ALB - ?
Решение: Так как BL - медиана по условию, то AL = LC = AC : 2 = 16 : 2 = 8.
LC = LH + HC ⇒ LH = LC - HC = 8 - 4 = 4.Треугольник ΔLHB = ΔCHB по первому признаку равенства треугольников так как, LH = HC = 4см, ∠LHB = ∠CHB = 90° так как по условию BH - высота, а сторона BH - общая для треугольников. Так как треугольник ΔLHB = ΔCHB, то соответствующие элементы треугольников равны, тогда ∠ACB = ∠BLC и ∠BLC = 60°.
Угол ∠ALB и ∠BLC - смежные, по свойству смежных углов их сумма 180°, тогда ∠ALB + ∠BLC = 180° ⇒ ∠ALB = 180° - ∠BLC = 180° - 60° = 120°.
(Пересекает OY ровно в одной точке - , значит касается в этой точке)
Эта окружность проходит через точку (-4,0):
Итак, у нас вышло семейство окружностей:
Все они подходят под условия, так некоторые из них:
Окружность с центром в точке (-2;0) и радиусом 2 касается OY в точке (0;0) и проходит через точку (-4;0)
Окружность с центром в точке (-4;4) и радиусом 4 касается OY в точке (0;4) и проходит через точку (-4;0)
Окружность с центром в точке (-4;-4) и радиусом 4 касается OY в точке (0;-4) и проходит через точку (-4;0)
Окружность с центром в точке (-10;8) и радиусом 10 касается OY в точке (0;8) и проходит через точку (-4;0)