Раз биссектриса перпендикулярна , т.е. является высотой, значит треугольник равнобедренный, а в таком треугольнике биссектриса является еще и медианой, т.е. АК=КС=18/2=9 попробую решить вторую!2)возьми боковую сторону за х а основание за 7+х.х+х+х+7=583х=58-73х=51х=51:3х=17ответ:173) Дано:MPK - равнобедренный треугольникPM=MKKP - медианаP(mkp)=38 смP(apm)=30 см Найти:MA-?Решение:KP - медиана ⇒ PA=AK=1/2*PKp(mpk)=MP+MK+PK=2*MP+PKp(apm)=MP+PA+MA=MP+MA+1/2*PKСоставим уравнение:2x+y=38x+z+1/2y=30 выразим у: y=30-2xподставим: x+z+1/2*(38-2x)=30x+z+19-x=30z=30-19z=11 ответ. медиана равна 11 см4) т.к треугольник равнобедренный,то другая сторна равна тоже 8см. тогда 3 я сторона равна 26-8-8=10см ответ:8 и 10 см
1) Если в треугольнике биссектриса ВК является ещё и высотой, то этот треугольник равнобедренный и АВ=ВС. Р(АВК)=16 , Р(ВКС)= Р(АВК) , так как ΔАВК=ΔВКС по двум сторонам и углу между ними (АВ=ВС , ВК - общая , ∠АВК=∠СВК) Р(АВС)=Р(АВК)+Р(ВСК)-2*ВК=2*Р(АВК)-2*5=2*16-10=22
Р(АВК)=16 , Р(ВКС)= Р(АВК) , так как ΔАВК=ΔВКС по двум сторонам и углу между ними (АВ=ВС , ВК - общая , ∠АВК=∠СВК)
Р(АВС)=Р(АВК)+Р(ВСК)-2*ВК=2*Р(АВК)-2*5=2*16-10=22
2) ΔDEF: ДК - биссектриса ⇒ ∠КDЕ=∠КDF=68°:2=34°
∠F=180°-(∠EDF+∠DEF)=180°-(68°+44°)=68°
ΔDKF: ∠DKF=180°-(∠KDF+∠DFK)=180°-(34°+68°)=78°
3) Точки, лежащие на серединном перпендикуляре к отрезку, равноудалены от концов этого отрезка ⇒ DC=DB=4 см.
АВ=AD+DB=AD+4 ⇒ AD=AB-4=7-4=3 (см) .