Прямокутний ∆авс вписано в коло з центром о радіуса r. до гіпотенузи ас проведено медіану і висоту, кут між якими дорівнює меншому з кутів даного трикутника – куту а. чому дорівнює відстань від основи висоти до вершини а?
1. Пусть ∠А=α; т.к. центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, то
АО=ВО=СО=R, и ∠А=∠В, как углы при основании равнобедренного ΔАОВ. Тогда ∠АОВ=180°-2∠А=180°-2α
2. Рассмотрим Δ ВОТ, где Т- основание высоты, проведенной к гипотенузе. ∠АОВ для него внешний угол при вершине О, потому равен сумме двух внутренних, не смежных с ним углов ΔАОВ, один из которых по условию равен углу А, это ∠ОВТ=α, а другой ∠ОТВ=90°, тогда используя свойство внешнего угла ∠АОВ=∠ОТВ+∠ОВТ, перепишем последнее равенство так 180-2α=90+α, откуда 3α=180-90; α=90/3=30, Значит,
ОТ= ОВ/2=R/2=0.5R, как катет, лежащий против угла в 30° в прямоугольном ΔВОТ.
Зная теперь АО и ОТ, найдем искомое расстояние АТ=АО+ОТ = R+0.5R=1.5R
В прямоугольном треугольнике середина гипотенузы является центром описанной окружности.
OA=OC=R
BO - медиана в △ABC
△BHС~△ABC (прямоугольные, С - общий), ∠CBH=∠A
∠OBH=∠A (по условию)
∠CBH=∠OBH, BH - биссектриса ∠OBC
BH - биссектриса и высота в △OBC => BH - медиана, OH=OC/2 =R/2
AH= OA+OH =R +R/2 =1,5 R
1. Пусть ∠А=α; т.к. центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, то
АО=ВО=СО=R, и ∠А=∠В, как углы при основании равнобедренного ΔАОВ. Тогда ∠АОВ=180°-2∠А=180°-2α
2. Рассмотрим Δ ВОТ, где Т- основание высоты, проведенной к гипотенузе. ∠АОВ для него внешний угол при вершине О, потому равен сумме двух внутренних, не смежных с ним углов ΔАОВ, один из которых по условию равен углу А, это ∠ОВТ=α, а другой ∠ОТВ=90°, тогда используя свойство внешнего угла ∠АОВ=∠ОТВ+∠ОВТ, перепишем последнее равенство так 180-2α=90+α, откуда 3α=180-90; α=90/3=30, Значит,
ОТ= ОВ/2=R/2=0.5R, как катет, лежащий против угла в 30° в прямоугольном ΔВОТ.
Зная теперь АО и ОТ, найдем искомое расстояние АТ=АО+ОТ = R+0.5R=1.5R
ответ 1.5R