ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
ответ:1. Так как М и К середины сторон треугольника (по условию), то МК - средняя линия треугольника. Поэтому МК || АС и МК= 1/2 АС = 24:2=12 см.
2. МКFE - прямоугольник, так как МК || АС, а МЕ перпендикулярно АС и КF перпендикулярно АС , значит согласно лемме о перпендикулярности двух параллельных прямых к третьей прямой (Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой), МЕ - перпендикулярно МК и КF перпендикулярно МК.
3. МК = ЕF = 12см, по свойству прямоугольника ( его стороны попарно равны и параллельны)
ответ: ЕF= 12см
Объяснение:
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.