Здесь два случая.1.Треугольник расположен над центром окружности(в этом случае его высота будет меньше радиуса окружности).2.Треугольник расположен под центром окружности(в этом случае его высота будет больше радиуса окружности).Итак,треугольник ABC,центр окружности-точка О,BH-высота.1 случай.Найдем HO из треугольника ОСН по теореме Пифагора.Получаем,что ОН=3.ВО=5,значит ВН=5-3=2.Найдем площадь треугольника.S=1/2*8*2=8Боковая сторона:ВС^2=16+4=20.ВС=2 корня из 5.2 случай.ОН как мы уже нашли,равняется 3.Тогда ВН=5+3=8.S=1/2*8*8=32BC^2=64+16=80.ВС=4 корня из 5
1. Раз BAD = 90 градусов и ABD = 45 градусов, то оставшийся угол ADB= 180-90-45=45 градусов. 2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC. 3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD. 4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов. 5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180. 180-90-60=2х 30=2х х=15 градусов = угол ACD = ADC. 6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что: 45=15+CDB CDB = 30 градусов
2. Судя по этим углам, можно заключить, что AD = AB, а раз AB = AC = BC, то AD = AB = BC = AC.
3. Раз в треугольнике AD = AC, то и угол ADC = угол ACD.
4. В треугольнике ABC угол A = угол B = угол C = 180/3 = 60 градусов.
5. В треугольнике ACD, как и всегда, сумма углов = 180 градусов. Но раз там угол D = угол C, то возьмём один из них за х. Получается, что х+х+90(угол DAB)+60(угол BAC) = 180.
180-90-60=2х
30=2х
х=15 градусов = угол ACD = ADC.
6. Угол D, как было указано в пункте №1, равен 45 градусам. Этот угол состоит из угла ADC (15 градусов) и угла CDB (который нам и надо найти). Получается, что:
45=15+CDB
CDB = 30 градусов