Прямоугольный треугольник, катеты которого равны 16 см и 63 см, а гипотенуза — 65 см, вращается вокруг большего катета.
Название тела вращения: ?
Высота полученного тела вращения равна ? см.
Образующая полученного тела вращения равна ? см.
Радиус полученного тела вращения равен ? см.
13,5 см
Объяснение:
Так как АД = 2АК, то АК = КД, и, следовательно, Δ АСД является равнобедренным.
ΔАСК также является равнобедренным, так как ∠АСК = ∠САК = 45°:
∠САК = 180° - ∠СКА - ∠САК = 180 - 90 - 45 = 45°,
а это значит, что так как СК = АВ = 9 см, то
АК = СК = 9 см.
Зная АК, находим АД:
АД = АК * 2 = 9 * 2 = 18 см.
ВС = АК = 9 см.
Таким образом:
зная длину нижнего основания трапеции (АД=18 см) и верхнего основания (ВС=9 см), можем найти среднюю линию трапеции EN как полусумму оснований:
EN = (АД + ВС) : 2 = (18+9): 2 = 27: 2 = 13,5 см.
ответ: EN = 13,5 см
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
h=a√3):2=6√3):2=3√3
AO=3√3):3)·2=2√3
МА=√(АО² + МО²)=√(12+4)=4 см