Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=192
х=√64×3
х=8√3см; ВС=8√3; АС=8√3×2=16√3см
Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²
ответ: КС=16см
Объяснение: пусть катет ВС=х, тогда гипотенуза АС=2х. Зная, что АВ=24, составим уравнение используя теорему Пифагора:
(2х)²-х²=24²
4х²-х²=576
3х²=576
х²=192
х=√64×3
х=8√3см; ВС=8√3; АС=8√3×2=16√3см
Так как ВС равна ½АС, то этот катет лежит напротив угла 30°, значит угол А= 30°, следовательно, угол С=60°. Зная, что биссектриса, проведённая из угла С делит его пополам, то угол ВСК=углу АСК=30°. Теперь рассмотрим полученный ∆ВСК.Он также прямоугольный, где ВС и ВК катеты, а СК- гипотенуза. мы нашли катет ВС, угол ВСК=30°, а значит, катет лежащий напротив него тоже будет равен половине гипотенузы в этом треугольнике, т.е. ВК=½СК. Точно так же пусть ВК=х, тогда КС=2х. Составим уравнение используя теорему Пифагора: КС²-ВК²=ВС²
(2х)²-х²=(8√3)²
4х²-х²=64×3
3х²=192
х²=192÷3
х²=64
х=√64
х=8; итак: ВК=8см, тогда КС=8×2=16см
КС=16см
Даны две точки A и B, имеющие конкретные координаты.
Точка М имеет переменные координаты х и у: М(х; у).
Если обе части заданного выражения BM²- AM² = 2AB² разделить на 2AB², то получим уравнение:
(BM²/2AB²) - (AM²/2AB²) = 1.
Если в этом уравнении разнести координаты по х и по у, то получится уравнение гиперболы.
Выразим отрезки АМ, ВМ и АВ через координаты.
АМ = √((хМ - хА)² + (уМ - уА)²).
ВМ = √((хМ - хВ)² + (уМ - уВ)²).
АВ = √((хВ - хА)² + (уВ - уА)²).
Заданное множество точек соответствует уравнению:
((хМ - хА)² + (уМ - уА)²) - ((хМ - хВ)² + (уМ - уВ)²) =
= 2*((хВ - хА)² + (уВ - уА)²).
Если бы были известны координаты точек, то можно было бы определить уравнение для конкретных условий.