Прямоугольный треугольник, равный между собой ABC и A1B1C1, лежит в параллельной плоскости a и b соответственно. Прямые AA1, BB1 и CC1 перпендикулярны к плоскости а. АА1=3, АС=2. Найдите угол между плоскостями ABC и A1BC и нарисуйте чертеж согласно условию задач
Есть любой n-угольник. Мы в нем рисуем все возможные диагонали.
В результате из каждого угла выходит n-1 отрезков к остальным n-1 углам.
Но к двум соседним углам идут стороны, а к остальным диагонали.
Поэтому из каждой вершины выходит n-1-2 = n-3 диагоналей.
А всего диагоналей в n-угольнике будет n*(n-3)
Но каждая диагональ соединяет два угла. Отрезок XY ничем не отличается от отрезка YX. Поэтому количество диагоналей надо разделить на 2. Получается: n(n-3)/2.
Для 11-угольника это будет 11*8/2 = 11*4 = 44 диагонали.
Так как точка Р является серединой АВ, а точка Q серединой АС, то РQ – средняя линия треугольника АВС.
Средняя линия параллельна одной из сторон треугольника. Тоесть PQ//BC.
Тогда угол AQP=угол АСВ как соответственные при параллельных прямых PQ u BC и секущей АС;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум углам.
Так как точка Р является серединой АВ, то АР/АВ=1/2, а точка Q серединой АС, то AQ/AC=1/2.
Следовательно: АР/АВ=AQ/AС, тоесть стороны ∆APQ относятся к сторонам ∆АВС в равных отношениях, тоесть стороны одного треугольника пропорциональны сторонам другого;
Угол ВАС – общий;
Тогда ∆АВС~∆APQ по двум пропорциональным сторонам и углу между ними.