2. Сумма углов восьмиугольника вычисляется по формуле:
. Разделив это число на 8, найдем чему равен один угол. . По определению, внешний угол это угол, смежный с любым внутренним. А так как сумма смежных углов равна 180 градусам, получаем: , что и сходится с утверждением.
3. Разобьем параллелограмм на четыре треугольника путем проведения в нем диагоналей. Для произвольного треугольника на плоскости всегда выполняется неравенство треугольника: сумма длин двух сторон больше или равна длине третьей. Дальше все понятно, во вложении.
5. У правильного многоугольника с нечентым числом сторон осями симметрии являются прямые, выходящие из вершин углов, которые перпендикулярны противолежащей углам сторонам. Для правильного многоугольника точка пересечения этих прямых будет являться центром описанной окружности. А по свойству тех же правильных многоугольников, это точка будет еще и центром вписанной окружности. Следовательно, центр вписанной окружности является центром симметрии пятиугольника.
Центр вписанной окружности треугольника - точка пересечения биссектрис.
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
h =a*sin60 =√3/2 a
Медианы треугольника делятся точкой пересечения в отношении 2:1 от вершины.
r =1/3 h =√3/6 a
a =6/√3 r =6/√3 *4√3 =24
Или
Точка пересечения биссектрис - центр вписанной окружности (O).
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
OH=4√3 (радиус), AC=2AH
В треугольнике (AOH) с углами 30, 90 стороны относятся как 1 :√3 :2
(катет против угла 30 равен половине гипотенузы, далее по теореме Пифагора)
AH=OH*√3 => AC=OH*2√3 =4√3 *2√3 =24
2. Сумма углов восьмиугольника вычисляется по формуле:
. Разделив это число на 8, найдем чему равен один угол. . По определению, внешний угол это угол, смежный с любым внутренним. А так как сумма смежных углов равна 180 градусам, получаем: , что и сходится с утверждением.
3. Разобьем параллелограмм на четыре треугольника путем проведения в нем диагоналей. Для произвольного треугольника на плоскости всегда выполняется неравенство треугольника: сумма длин двух сторон больше или равна длине третьей. Дальше все понятно, во вложении.
5. У правильного многоугольника с нечентым числом сторон осями симметрии являются прямые, выходящие из вершин углов, которые перпендикулярны противолежащей углам сторонам. Для правильного многоугольника точка пересечения этих прямых будет являться центром описанной окружности. А по свойству тех же правильных многоугольников, это точка будет еще и центром вписанной окружности. Следовательно, центр вписанной окружности является центром симметрии пятиугольника.